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Abstract. Many time series in diverse fields of application may exhibit long-memory. The class
of fractionally integrated (FI) processes can be used to try to model this strong data dependence.
Asymptotic tests for FI include the re-scaled range statistic test and its modified form, the frequency-
domain regression-based procedure, the modified Higuchi’s test and Jensen’s test. De Peretti and
Marimoutou (2002) finds that proper finite-sample inferences are not possible using these techniques
without correcting for size distortions. Some attempt this correction through ‘bootstrapping’, but
this method is not perfect and needs more study and improvements. In this paper, I examine and
compare the finite-sample properties of parametric and nonparametric bootstrap tests by using graph-
ical techniques of Davidson and MacKinnon (1998a) for showing whether they properly correct the
distortions while retaining their power relative to the corresponding asymptotic tests. One of the tests
uses a double bootstrap that provide better true power and size properties. I use a bilateral P value
that permits the true power of the tests to grow when the size distortions are asymmetric. We then
apply these procedures to a real time series to investigate its long memory properties.

Key words: parametric and nonparametric bootstrap, long memory, tests, P value plots, corrected
size-power curves

1. Introduction

Many time series in diverse fields of application may exhibit long-memory or
long-range dependence. This occurs when the autocorrelation function (a.c.f.) at
large lags decays to zero at a slower rate than data following an ARMA(p, q)
model and at a quicker rate than that of a unit root processes (Mandelbrot et al.,
1969, 1971). The class of fractionally integrated (FI) processes is characterised by
hyperbolic decay rate, and it is often used to try to capture this strong data depen-
dence. Granger and Joyeux (1980) and Hosking (1981) are two seminal articles on
ARFIMA(p, d, q) processes.

Many methods for estimating and testing the long memory parameter d are
described in Beran (1994). A classical test for FI is the re-scaled range statistic test
(Hurst, 1951; Mandelbrot, 1972). Lo (1991) proposes another which is a modified
form of the Hurst statistic. Other tests for FI are the frequency-domain regression-
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based procedure introduced by Robinson (1995), and the test of Jensen (1994). I
also construct a test based on the estimator of Higuchi (1988).

Most applications of these techniques rely on asymptotics to make small-sample
inferences. De Peretti and Marimoutou (2002) examines and compares the finite-
sample properties of these five tests using the graphical techniques developed by
Davidson and MacKinnon (1998a). That study examines the size correction needed
to show the true power of the tests rather than their nominal power, it uncovers two
severe problems.

First, under the null hypothesis H0, there are very large size distortions for all
tests, all sample sizes, and all parameter values. It is impossible to make correct
inferences without correcting for the distortions. While correction can be made
using bootstrap techniques (Andersson and Gredenhoff, 1998), this method is not
perfect and needs further study. In this paper, I examine and compare the finite-
sample properties of bootstrap tests using the graphical techniques of Davidson
and MacKinnon (1998a) to show the true power of these tests, and to see if there is
a loss of power of the bootstrap test relative to that of the corresponding asymptotic
test on a proper size-corrected basis (Davidson and MacKinnon, 1996).

The second problem is that, under the alternative hypothesis H1, for all tests,H1

can be accepted more often under H0 than under H1 when there is persistent1 long-
memory against persistent short-memory. One of the tests employed uses a double
bootstrap that provides better true power and size properties. I also use a bilateral
P value that permits the true power of the tests to grow when the size distortions
are asymmetric.

This approach is of interest when we wish to detect long-memory behavior on
real data. The purpose of this work is to explain in detail this method and to show
how it can be used on real data with reasonable precautions.

Section 2 details bootstrap tests for FI. Monte Carlo results based on simulated
ARMA processes and ARFIMA processes are presented in Section 3. In Section 4,
the described methods are applied to real data to determine the presence of long-
memory behavior. Concluding remarks are offered in Section 5.

2. Asymptotic Tests for Long-Memory

2.1. THE MODEL

I restrict attention to univariate, linear FI models of the ARFIMA2 form:

φ(L)(1 − L)dxt = θ(L)εt t ∈ {1, . . . , T }, (1)

{εt} ∼ i.i.d.D(0, σ 2
ε ), (2)

where

• φ and θ are polynomials that have all roots outside the unit circle,
• σ 2

ε < ∞,
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• L is the lag operator,
• d is the differencing parameter and takes a real value,
• D(0, σ 2

ε ) is a distribution with zero mean and σ 2
ε finite variance.

In some circumstances, a long-memory process may be approximated by a FI
model; hence testing for long-memory can be done by a test on d. Such tests are
applied to stationary and invertible series (require that |d| < 1/2), and H0 : d = 0
is thus a natural null hypothesis.

2.2. FIVE TESTS FOR LONG-MEMORY

I test the null hypothesis H0 : d = 0 against H1 : d ∈ (−0.5, 0) ∪ (0, 0.5), in the
five following ways:

2.2.1. The R/S Method

The R/S or re-scaled adjusted range statistic is introduced in Hurst (1951), where
the question of how to regularise the flow of the Nile river is investigated. Mandel-
brot (1975) proves that under regularity conditions with h0 : d = 0, this statistic
converges in distribution to a non-degenerate random variable. In Appendix A.1, I
use the Mandelbrot proof to construct the asymptotic test.

2.2.2. The Modified R/S Method

A weakness of the standard R/S analysis is its sensitivity to the short-range de-
pendence. To avoid short memory perturbations, Lo (1991) suggests modifying
the R/S statistic to use a consistent estimator of the variance of the partial sums
correction (Newey and West (1987) method) that takes into account the short-term
dependence. See Appendix A.2 for more details.

2.2.3. The Log-Periodogram Method

This method is introduced in Geweke and Porter-Hudak (1983) for the stationary
Gaussian case, where, in a semi-parametric framework, the fractional parameter d
of long-range dependence behaviour is estimated. The only information required
is the behaviour of the spectral density near the origin. Robinson (1995) develops
this method by maximisation of an objective function in the frequency domain, and
I use this extension for the statistic and the asymptotic test.

The choice of the break point m that determines the point that truncates the
log-periodogram regression (hence in the objective function), is very important for
robustness against short-memory effects, see Appendix A.3. m must be an integer
less than or equal to T /2 so that m = o(T ) to have consistency. I optimise m for
each sample size T with d = 0.3. Specifically, I choose that m for which the true
power curve is the greatest. I find that the rule m = O(

√
T ) is good, and in fact

choose for m following the rule [m = √
2 × T ], see Table I. While m is small, it
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Table I. Choice of m.

T ≤128 256 512 1024 2048

m Inapplicable 23 32 45 64

Table II. Choice of kmax.

T ≤128 256 512 1024 2048

kmax Inapplicable 128 256 256 512

is necessarily so for the true power of the tests. The optimal choice for the value of
m depends on many parameters, but there are no known rules to obtain it.

2.2.4. The Modified Higuchi Method

The Higuchi’s estimator is introduced in Higuchi (1988) for measuring the fractal
dimension D of a non periodic and irregular time series, such as, for example,
(d + 0.5)-self-similar processes (we have d = 1.5 − D). If the time series has
no long-range dependence, then we should have D = 1.5. To perform the test
procedures, I use the statistic

d̂ − 0.5

σ̂ (d̂)
, (3)

where σ̂ (d̂) is the consistent estimator of σ (d̂).
If I use the OLS estimator of σ (d̂), the performance of the asymptotic test is

very poor, and therefore I prefer to use the bootstrap estimator. I then apply the
asymptotic test procedure. For computational raisons, in the context of the Monte
Carlo experiments, I do only 39 bootstrap replications. Even, with this very small
number, this test is the best, so I restrict my presentation to this case. In the context
of real data analyse, I suggest taking at least several hundred bootstrap replications.

As in the log-periodogram method, I find that the choice of the break point kmax
that defines the maximal time interval for the aggregated series used to construct
the fractal curves is very important, see Appendix A.4. For small scales, the short
memory component dominates the behaviour of the series, and therefore they must
de truncated. Table II shows the values I use for kmax. There are no known rules to
determine the optimal value of kmax. All the remarks on the choice of truncation
point made for the log-periodogram method hold here.
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2.2.5. The Wavelet Method

Jensen (1994), following Wornell and Oppenheim (1992), suggests estimating d
using wavelet analysis. A wavelet set is the set of dilatations and translations of a
mother wavelet function, and they form an orthonormal basis in L2(R), that allows
one to decompose L2(R) in a growing sequence of subspaces Vj that approximate
L2(R). Vj can be viewed as containing the functions with which one cannot exam-
ine details smaller than 2−j . We must truncate the subspace set by eliminating those
corresponding to high frequencies. The aim is to reduce the disturbances caused by
the short memory. See Appendix A.5 for more details.

A problem arises because one cannot optimise the truncation point with respect
to sample size since the frequencies do not depend upon the sample size. Rather,
they depend on d, the parameter we wish to estimate. So, I must, therefore, examine
all possible values for the truncation point. But, another problem appears: the per-
formance is not satisfactory for sample sizes smaller than 2049. This arises because
the covariances between the wavelet coefficients are not taken into account (Barnet
et al., 2000). In Jensen (1994), this problem does not arise because processes under
the null are IID that is not realistic for real data. We do not present the results
concerning Jensen’s test in this paper.

3. Bootstrap Tests for Long-Memory

While the approaches described above are asymptotically valid, the tests for the
statistics based on the asymptotic distributions are not exact in finite samples, and
so, it is natural to ‘bootstrap’ them. For further information on the bootstrap, see
Efron (1979), Davidson and MacKinnon (1993, 1996), and (1998b).

3.1. THE BOOTSTRAP PROCEDURE

The procedure is as follows:

1. Compute the test statistic (Hurst, Lo, Robinson, Higuchi, or Jensen), which
will be denoted τ̂ .

2. Estimate the model (1)–(2) by maximum likelihood under the H0 : d = 0,
(where the model is reduced to an ARMA(p′, q ′)), to obtain (φ̂, θ̂ , σ̂ 2

ε ) and ε̂.
3. Draw B sets of bootstrap error terms, εb, and use them to generate B bootstrap

samples xb. There are numerous ways to drawn the error terms, four of which
are described below. The elements of xb are generated recursively from the
equation

xbt = [1 − φ̂(L)]xbt + θ̂ (L)εbt , (4)

where the elements of xbt are equal to the observed values of xt if they corre-
spond to values of xt prior to period p̂+ 1, and equal to the appropriate lagged
values of xbt otherwise.
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4. For each bootstrap sample, compute the statistic (Hurst, Lo, Robinson, Higuchi,
or Jensen), denoted τb, with xb instead of x.

5. Then compute the estimated bootstrap P value (see (6) or (7)–(8)).

I examine four ways for generating the εbt :

1. The parametric bootstrap, called b0: the εbt are independent draws from the
N(0, σ̂ 2

ε ) distribution.
2. The simplest nonparametric bootstrap, called b1: the εbt are obtained by re-

sampling with replacement from the vector of {ε̂t}Tt=p̂+1.

3. A slightly more complicated from of nonparametric bootstrap called b2: the εb

are generated by re-sampling with replacement from the vector

√

T

T − 2p̂ − 1


ε̂ − 1

T − p̂
T∑

i=p̂+1

ε̂i





T

t=p̂+1

. (5)

4. The most complicated nonparametric bootstrap, called b3: the εb are generated
by re-sampling from the vector with typical element et constructed as follows:

• let dt be the t th diagonal element of P[1−φ(L)], the matrix projecting onto the
space spanned by 1 − φ(L);

• divide each element of ε̂ by
√

1 − dt ;
• re-centre the resulting vector;
• re-scale it so that it has variance σ̂ 2

ε .

This type of procedure is advocated in Weber (1984).

3.2. THE CHOICE OF THE BOOTSTRAP P VALUE

By drawing large numbers of bootstrap statistics τb, a bootstrap P value can be
computed as

p̂uni(τ̂
2) = 1

B

B∑
b=1

I ((τ b)2 > τ̂ 2), (6)

(Davidson and MacKinnon, 1993). This formula corresponds to a unilateral test,
but similar formulae are often associated with symmetric bilateral tests. However,
the size distortion is not necessarily symmetric. Thus, for bilateral (asymmetric)
tests, I prefer to use the formula

p̂bil(τ̂ ) = 2 min{p̂(τ̂ ), 1 − p̂(τ̂ )}, (7)

where

p̂(τ̂ ) = 1

B

B∑
b=1

I (τ b > τ̂ ). (8)
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This sort of P value can be found in Chapter 5 of Davidson and MacKinnon, 1993,
in the context of confidence regions.

3.3. THE ESTIMATION UNDER THE NULL

Best way to estimate the model (1)–(2) under the null hypothesis is to consider
the ARMA(p′, q ′) model. I select (p̂′, q̂ ′), the estimates of (p′, q ′), by the BIC
(Schwarz, 1978). In the context of Monte-Carlo experiments, I use an AR(p′′) for
reasons of computation time. However, I recommend to those who only want to
use the bootstrap tests on true data to consider the full ARMA model to estimate
H0, because p̂′′ in the AR model can be large under H1. It is of interest to note that
this issue does not much affect the Monte Carlo results. An AR(p′′) process with a
large p′′ has essentially the same appearance of long memory as its corresponding
ARMA(p′, q ′).

3.4. THE NUMBER OF BOOTSTRAP REPLICATIONS

To compute the estimated bootstrap P value, one must draw B sets of bootstrap
error terms. I use a small value for B, B = 99, in the Monte Carlo experiments
for reasons of computing time. Again, I recommend to those who want only use
bootstrap tests to consider larger values, which allows some (but not much) gain
true power and better properties for the size distortion. The gain is small, however
(see Figure 4, where the true power curves of the bootstrap tests are not far from
those of the corresponding asymptotic tests). The bootstrap size correction is not
quasi-perfect in this context because the P-value functions are strongly sloped (Fig-
ures 1 and 2). This means that the distributions of the statistics depend greatly on
the parameter values, and thus, the bootstrap error in estimating the null hypothesis
become more important.

4. Monte-Carlo Experiments

The theoretical results of Davidson and MacKinnon suggest that all the bootstrap
tests should work well with finite samples. But this need not be so, depending on
circumstances. It is possible then for the to be removed from the true distribution or
even be unstable and be inferior to the corresponding asymptotic test. I now provide
evidence, based on Monte-Carlo experiments, that the bootstrap is not unstable, but
it can encounter difficulties.

All the experiments deal with tests for short memory in the context of a model
without a constant term. UnderH0, the test statistics depend only on the parameters
(φ, θ, σ 2

ε ) and T . σ 2
ε is a scale parameter and its value does not affect the statistics.

Thus I focus on the coefficients (φ, θ), setting σ 2
ε to unity. I use T = 2n, where n is

an integer. For n ≤ 7, all the asymptotic statistic tests display problems. Either they
have negligible true power or they do not work (de Peretti and Marimoutou, 2002).
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Figure 1. P value functions for long memory tests at 0.05 level, T = 128.

Figure 2. P value functions for long memory tests at 0.05 level, T = 128.
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The bootstrap cannot solve problems of this sort since it corrects only the size
distortion. So, in the following, I discuss performances only for n ∈ {8, 9, 10, 11}.

4.1. GRAPHICAL METHODS

Techniques of Davidson and MacKinnon (1998a) for the graphical display of sim-
ulation evidence of the size and power of tests of hypotheses are used. Two types
of display – called P value plots3 (Appendix B.1) and size-power curves4 (Appen-
dix B.2) – are used. For the second type of display, I need to use a DGP that satisfies
the null hypothesis. A reasonable choice is the pseudo-true null (Appendix B.2),
and to calculate it, I do an asymptotic estimation of the ARFIMA(p, d, q) process
using an ARMA(p′, q ′) filter selected by the BIC. Monte Carlo experiments on the
properties of Long Memory test are investigated through these figures.

4.2. BOOTSTRAP LONG MEMORY TESTS UNDER THE NULL

P value plots are examined for the parametric bootstrap test b0 and for the nonpara-
metric bootstrap tests b1, b2, b3 applied to the Hurst, Lo, Robinson and Higuchi’s
test statistics. They are compared to their corresponding asymptotic test. Four cases
of DGP for the null hypothesis are selected by the P value functions (see below).
The P value plots are based on an experiment with 800 replications. More precisely,
each panel shows the proportion of replications with P values less than size a for
each of the five tests, as a function of α ∈ [0, 1].

4.2.1. Case of AR(1) Processes

The Data Generating Process (DGP) under H0 is

xt = φ1xt−1 + ut , (9)

φ1 ∈ (−1, 1), (10)

ut ∼ i.i.d. N(0, 1), (11)

Figure 1 shows P value functions (PVF), for φ = (φ1, 0, 0, . . .), T = 128, and a
normal distribution for the error terms, based on 800 replications for each value of
φ1. These PVFs are constructed using the asymptotic distributions. One observes
severe over rejection in some cases, notably when |φ1| > 0.4, especially for the
Hurst test.

Figure 1 is used to decide what case to investigate. Case 1 is chosen as typical,
since it has a plausible value of φ, (>0), and no great curvature. Cases 2 and 3
are chosen to be ones where the bootstrap tests might encounter problems, because
the PVFs display considerable curvature. A fourth case is considered in which the
parameters are the same as in the Case 3, but the error terms have a t (5) distribution
instead of N(0, 1).



196 CHRISTIAN DE PERETTI

Table III. Choice of φ1.

Cases Hurst Lo Robinson Higuchi Jensen T

1 0.1 –0.2 –0.2 0.2 – 512

2 0.6 0.9 0.7 0.9 – 1024

3 –0.4 –0.9 –0.9 –0.9 – 256

4 –0.4 –0.9 –0.9 –0.9 – 256

As in de Peretti and Marimoutou (2002), the asymptotic tests have size dis-
tortions too large to produce correct inferences. One sees that all the bootstrap
tests correct quasi perfectly the size distortions, even for large values of |φ1|, see
Figure 3 for a few examples for Case 3 of the parameters (Table III). So, in this
case, the use of the bootstrap is essential.

4.2.2. Case of AR(p) Processes

The DGP under H0 is

xt = φ1xt−1 + · · · + φpxt−2 + ut , (12)

(φ1 · · · φp) such as xt stationary, (13)

ut ∼ i.i.d. N(0, 1). (14)

The (φ1 · · ·φp) are chosen so they are the asymptotic estimations of an
ARFIMA(0, d, 0) process selected by the BIC, where d ∈ (−0.5, 0.5).

Figure 2 shows P value functions (PVF), as function of (φ1 · · ·φp) (i.e., as
function of d and truncated by the BIC), for T = 128, and a normal distribution for
the error terms, based on 800 replications for each value of d, using the asymptotic
distributions.

As before, Figure 2 is used to decide which cases to investigate, see Table IV
(Case 4 is the student case). p is often large, about five or ten.5

One observes over-rejection for the Hurst, Lo, and Robinson bootstrap tests.
As explained, the true reason for which the bootstrap size correction is not quasi-
perfect in this context is that the P value functions are highly sloping. The Higuchi
bootstrap tests are quasi-perfect, not because the underlying Higuchi’s estimator
is better than the others, but because we use a double bootstrap method. In all the
cases, the bootstrap test distortions are all lower than the asymptotic test ones. See
Figure 4 for a few examples for Case 2 of the parameters (Table IV). Thus, I advise
use of the bootstrap tests in these cases too. If possible, it is better to use double
bootstrap tests, but the computing time can be large.
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Figure 3. Size distortions for long memory tests. We are in the case of AR(1) processes for
the Case 3 of the parameters (Table III).
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Figure 4. Size distortions for long memory tests. We are in the case of AR(p) processes for
the Case 2 of the parameters (Table IV).
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Table IV. Choice of d .

Cases Hurst Lo Robinson Higuchi Jensen T

1 –0.45 –0.45 –0.45 –0.45 – 256

2 –0.3 –0.3 –0.3 –0.3 – 512

3 0.3 0.3 0.3 0.3 – 2048

4 –0.3 –0.3 –0.3 –0.3 – 512

4.3. SIZE-POWER CURVES OF BOOTSTRAP LONG MEMORY TESTS

The size-power curves are studied for the parametric bootstrap test b0 and for the
nonparametric bootstrap tests b1, b2, b3, as compared to the corresponding asymp-
totic tests. There is no unique way to measure size-corrected power (Davidson
and MacKinnon, 1996). I choose the null DGP characterised by the ‘pseudo-true
values’, in the sense of White (1982), that corresponds to the fixed DGP which
is, asymptotically at least, the closest null to a given fixed DGP. I then pick com-
binations of d and T in Table IV to investigate, and run experiments with 400
replications under H1 and under H0, using the same random numbers (to avoid
experimental errors).

4.3.1. Case of ARFIMA(0, d, 0) Processes

The DGP under H1 is

xt ∼ Gaussian or Student ARFIMA(0, d, 0) (15)

d ∈ (−0.5, 0.5). (16)

d is taken from Table IV. The DGP under H0 is generated as in Section 3.3.
According to theory, the bootstrap test power should be similar to that of the

corresponding asymptotic test using the size correction. We verify here that the
bootstrap does not result in power loss. In all the cases, the intrinsic power curves
of the bootstrap are quite similar to those obtained for the asymptotic distribution,
even for parameters chosen so that bootstrap tests could encounter problems. See
Figure 5 for a few examples for Case 2 of the parameters (Table IV).

4.4. CASE OF STUDENT ERROR TERMS

To test the nonparametric bootstrap, I simulate leptokurtic data using a Student’s t-
distribution with five degrees of freedom for the error terms. To capture the excess
probability in the tails, I implement more bootstrap replications: B = 399. In the
case of an AR(1) processes, the correction of the size distortion is quasi-perfect
for all the parametric and nonparametric bootstraps, as in the Gaussian cases. In
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Figure 5. True powers for long memory tests. We are in the case of AR(p) processes in the
Case 2 of the parameters (Table IV).
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the case of AR(p) processes, the correction of the size distortion is worst than
the correction in the Gaussian case, but parametric and nonparametric bootstraps
perform quite similarly. In all the Student’s t cases, there is no true power loss from
the use of bootstrap methods.

4.5. CASE OF UNILATERAL P VALUE

The results for unilateral P value tests are poor compared to bilateral P value
tests. The size distortions are closer to the asymptotic distortions than the bilateral
bootstrap distortions. Since the power curves are very close, one cannot see the
difference between the unilateral tests and the bilateral tests for this criterion. But
this is not important, because there is no problem for the true power.

5. Example: Long Memory Analysis for Silver Market Returns

The importance of long-memory in asset markets is considered initially in Man-
delbrot (1971). Greene and Fielitz (1977) is perhaps the first study to apply R/S
analysis to common stock returns. More recently, the evidence in Fama and French
(1988), Lo and MacKinlay (1988), and Poterba and Summers (1995) may be
indicative of a long memory component in stock market prices. More recent ap-
plications include Booth and Kaen (1979) (gold prices), Booth, Kaen, and Koveos
(1982) (foreign exchange rates), and Helms, Kaen, and Rosenman (1984) (futures
contracts).

5.1. DATA DESCRIPTION

As an illustration testing for long term memory in stock returns, I apply the previ-
ous analysis to a specific data set: daily observations of silver prices available from
01/07/1993 to 30/11/2001 yielding a sample size of 2,140 observations.

From Figure 6a, one sees that silver prices are not stationary. Bootstraped
Dickey Fuller tests6 confirm this. So, I use logarithmic differenced data. Let {xt }Tt=1
indicate the silver price series at time t , and define

dxt = ln(xt )− ln(xt−1) (17)

as the returns series at time t ∈ {1, 2, . . . , T − 1}.
I also subject this data set to an analysis developed in Ding et al. (1993), Ding

and Granger (1996), and Granger and Ding (1996) dealing with the long memory
property of various speculative returns. For this, I consider the absolute returns
|dxt | and the squared returns dx2

t , which are good measures of the volatility, since
E(dx2

t ) estimates the variance and E(|dxt |) the standard deviation of the series.
Figures 6b–d show the plots of dxt , |dxt |, and dx2

t .
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5.2. RESULT DESCRIPTION

The Hurst, Lo, Robinson, and modified Higuchi’s asymptotic and bootstrap P
values7 are performed for the returns, the absolute returns, and the square returns
for the entire sample period and are given in Table V. BHiguchi = 999 bootstrap
replications are used to compute the modified Higuchi statistic for the asymptotic
test, and BHiguchi = 39 for the four bootstrap tests. B = 399 bootstrap replications
are used to compute the bootstrap P values. There we see that, for the simple returns
series, the asymptotic Hurst’s and Lo’s tests reject the hypothesis of long memory
at the 0.01 level. The Robinson’s and Modified Higuchi’s asymptotic tests, how-
ever, accept this hypothesis, which contradicts the notion that financial series do
not present evidence for long range dependence in the mean and the conclusions
of the Hurst and Lo tests. While this rejection could be due to size distortion in
the tests, we should note that all the bootstrap tests, which suffer less from size
distortion, reject the hypothesis of long memory at 0.01.

It is also of interest to note that the P values (and the point estimates) indicate
persistence of root less than unit root in the silver price first difference data.

Although Table V shows that the Robinson and the modified Higuchi asymp-
totic P values are statistically significant at the 0.01 level for the daily silver returns,
none of the bootstrap P values is. The importance of bootstrapping in calculating
these statistics is clear: the ARMA specification of the data drives the fractional
integration result. The statistical insignificance of the bootstrap P values indicates
that the data respect the short memory null hypothesis.

Consider now the series of absolute returns. All the methods give a P value for
long range dependence smaller than 0.05. The results are unambiguous.

The results are opposite for squared returns. However, note that all the bootstrap
P-values are much less significant than the asymptotic P-values, so we cannot take
into account the asymptotic results. The small P-values for the Robinson and mod-
ified Higuchi statistics are possibly due to nonrobustness against greatly skewed
and leptokurtic data. The greater P-values for the Hurst and Lo statistics could be
due to a break detected in the time series. These cases need further study.

6. Conclusion

I examine the behaviour of four tests for fractional integration: the re-scaled range
statistic test (Hurst, 1951), the Lo’s test (1991), the frequency-domain regression-
based procedure (Robinson, 1995), and the Higuchi’s estimator based test (1988).
If one uses these asymptotic techniques to make small-sample inferences, two se-
vere problems arise. First, under the null hypothesis H0, there are very large size
distortions. It is impossible to make correct inferences without correcting for the
distortions. Second, under the alternative hypothesis H1 for all the tests, H1 can be
accepted more under H0 than under H1 when there is persistent long-memory vs
persistent short-memory.
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Table V. P value results for long memory for series of transformed returns of
silver prices.

Test method Hurst Lo Robinson Modified Higuchi

P value results for long memory for series of simple returns of silver prices

Point estimated of d –0.0880 –0.0880 –0.1973 –0.1249

Asymptotic P value 0.5446 0.6370 0.0013 0.0078

Bootstrap 0 P value 0.3960 0.5163 0.0000 0.1010

Bootstrap 1 P value 0.4712 0.5815 0.0251 0.1212

Bootstrap 2 P value 0.4712 0.5815 0.0251 0.1010

Bootstrap 3 P value 0.4712 0.5815 0.0251 0.0808

P value results for long memory for series of absolute returns of silver prices

Point estimated of d –0.0241 –0.0241 0.4473 0.3156

Asymptotic P value 0.0000 0.0000 0.0000 0.0000

Bootstrap 0 P value 0.0201 0.0201 0.0000 0.0202

Bootstrap 1 P value 0.0050 0.0050 0.0050 0.0404

Bootstrap 2 P value 0.0050 0.0050 0.0050 0.0404

Bootstrap 3 P value 0.0100 0.0050 0.0050 0.0202

P value results for long memory for series of square returns of silver prices

Point estimated of d 0.4720 0.4720 0.8851 0.8289

Asymptotic P value 0.0000 0.0000 0.0000 0.0000

Bootstrap 0 P value 0.1454 0.1253 0.0000 0.0000

Bootstrap 1 P value 0.1604 0.1654 0.0050 0.0150

Bootstrap 2 P value 0.1604 0.1654 0.0050 0.0100

Bootstrap 3 P value 0.1554 0.1504 0.0050 0.0050

Long memory analysis of daily silver stock returns from 01/01/1985 to
30/11/2001 using the classical rescaled range asymptotic and the bootstrap P
values, the modified rescaled range asymptotic and bootstrap P values, the Robin-
son asymptotic and bootstrap P values, and the modified Higuchi asymptotic and
bootstrap P values. The bootstrap P values are bilateral.

I find that bootstrapping techniques can be used to provide correction. One of
the tests uses a double bootstrap that provides better true power and size properties.
Moreover, I use an bilateral bootstrap P value that permits the true power of the
tests to grow when the size distortions are asymmetric.

The Monte Carlo results are the following. In the case of AR(1) processes,
all the bootstrap tests correct the size distortions quasi perfectly, even for large
values of |φ1|. Size distortions of the asymptotic tests are to large to allow correct
inferences. So, in this case, the use of the bootstrap is essential.

In the case of AR(p) processes, there is over rejection by the Hurst, Lo, and
Robinson bootstrap tests. The Higuchi (double) bootstrap tests are quasi-perfect.
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This method performs better than the others, not because the Higuchi’s estimator
has better prop erties than the others, but because it uses a better estimation of the
variance of d by bootstrapping in the statistic. Of course, we must also apply the
bootstrap test procedure to correct the size distortion. The combination of both the
bootstraps is called double bootstrap. In all the cases, the bootstrap test distortions
are lower than the asymptotic test ones. I recommend, then, using bootstrap tests
in these cases too. It is better to use double bootstrap tests, but the computing time
can be large.

In the case of ARFIMA(0, d, 0) processes, the bootstrap does not result in any
power loss. In all the cases studied, the intrinsic power curves of the bootstrap are
essentially indistinguishable from the ones obtained for the asymptotic distribution,
even for parameter values chosen to give the bootstrap tests possible problems.

With leptokurtic error terms, in an AR(1) processes, the correction of the size
distortion is quasi-perfect for all the parametric and nonparametric bootstraps. For
an AR(p) processes, the correction of the size distortion is worst than the correction
in the Gaussian case, but parametric and nonparametric bootstraps perform simi-
larly. In all the Student’s t cases, there is no true power loss from use of bootstrap
methods.

The results for unilateral (symmetric) P value tests are poor compared to bilat-
eral (asymmetric) P value tests. The size distortions are closer to the asymptotic
distortions than the bilateral bootstrap distortions.

In Section 5, these proposed methods are applied to daily silver data to see if
long memory behaviour could be detected. The asymptotic tests can confuse short
memory in the series mean with long memory. The bootstrap test performs better in
detecting short memory. The long memory of the variance of the series is detected
clearly from bootstrapping.

My principal conclusion is that one must use at least a bilateral bootstrap test to
detect long-range dependence in time series. One cannot trust the results of non-
bootstrapped or unilateral bootstrapped tests because of excessive size distortion.
The best way to proceed is to use a double bilateral bootstrap test, even though this
can be time consuming.

Acknowledgements

I greatly thank Dr. Mohamed Boutahar and Prof. Marimoutou Vêlayoudom for
readings and advice. I thank also the 8th International Conference of the Soci-
ety for Computational Economics in Aix-en-Provence 2002 (France) organised
by Christophe Deissenberg (University of Aix Marseille II), the 34e Journées de
Statistiques of the Société Française de Statistique in Bruxelles 2002 (Belgium)
organised by the Université Catholoque de Louvain, and the 7e colloque des jeunes
économètres in Mont Sainte Odile 2002 (France) organised by the Université de
Strasbourg for questions and remarks. Finally, I thank the referee of Computational
Economics review which corrects the paper.



206 CHRISTIAN DE PERETTI

Appendix A: Long Memory Tests

A.1. THE R/S METHODS

Let x̄T = 1
T

∑T
i=1 xi denote the sample mean and s2

T = 1
T

∑T
=1(xi − x̄T )

2 the
sample variance. The R/S statistic is given by

Q̃T = RT

sT
, (18)

where

RT =

max

1≤t≤T

t∑
i=1

(xi − x̄T )− min
1≤t≤T

t∑
j=1

(xj − x̄T )

 , (19)

for every T > 0. Using Mandelbrot’s proof, we have in our case under the null
hypothesis:

Q̃T√
T

→ V, (20)

where V is the range of a Brownian Bridge on the unit interval.

A.2. THE MODIFIED R/S METHOD

The Newey and West (1987) estimator of the variance is

σ̂ 2
T (q) = 1

T

T∑
i=1

(xi − x̄T )2 + 2

T

q∑
j=1

ωj(q)

T∑
k=j+1

(xk − x̄T )(xk−j − x̄T ), (21)

where

ωj(q) = 1 − j

q + 1
, q > T . (22)

There is no criterion to choose q. For our experiments, we set q = 2. To test H0,
Lo (1991) proposes the statistic QT√

T
where QT = RT

σ̂T
.

A. 3. THE LOG-PERIODOGRAM METHOD

The spectral density of an stationary ARFIMA(p, d, q) process is proportional

to λ−2d near the origin, i.e., f (λ)
λ→0+∼ Gλ−2d . The periodogram I (λ) is used

to estimate f (λ) and thus d using the following method. Robinson (1995) has
considered the objective function

Q(G, d) = 1

m

m∑
i=1

(ln(Gλ−2d
i )+Gλ2dm−i

i I (λi)), (23)
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calculated for the Fourier frequencies {λi = 2πi
T

; i = 1, 2, . . . , m}, where m is
an integer lower or equal to T

2 . m determines the truncation point in the previous
regression. Let 1 = [11,12] be the set of admissible values of d where − 1

2 <

11 < 12 <
1
2 . One can write

d̂R = argmin{R(d); d ∈ 1}, (24)

with

R(d) = ln(ĜH )− 2d
1

m

m∑
i=1

ln(λi), (25)

ĜH = 1

m

m∑
i=1

λ2d
i I (λi). (26)

Robinson has shown that d̂R is consistent (under certain conditions) and asymptot-
ically normal

√
m(d̂R − d) n→∞−→ N

(
0,

1

4

)
. (27)

A.4. THE HIGUCHI METHOD

The partial sums of xt are yt = ∑t
i=1 xi . Higuchi (1988) first constructs a new time

series, ylk , defined as

y(l), y(l + k), y(l + 2k), . . . , y

(
l +

[
T − l
k

]
k

)
, l ∈ {1, 2, . . . , k}, (28)

where [ ] denotes the integer part and both k and l are integers. He defines the
length of the curves, ylk, as

Ll(k) = T − 1

[T−l
k

]k2

[ T−l
k

]∑
i=1

|y(l + ik)− y(l + (i − 1)k)|. (29)

He defines the length of the curve for the time interval k, L(k), as

1

k

k∑
i=1

Ll(k). (30)

In the case of long-memory series, we have the following result:

E(L(k)) ∼ cLk
d−1.5. (31)
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Then, he plots log(L(k)) against to log(k).8 The maximum value of k, kmax, is
T /64 for Higuchi (1988), but we must choose another value for the inference
context. The line is fitted according to the least-square procedure.

A.5. THE WAVELET METHOD

A wavelet is defined as

4j,k(t) = a
1
24(aj t − kb), t ∈ R, (32)

where (j, k) ∈ Z × Z and a > 0, b > 0. One often sets a = 2 and b = 1. The
mother wavelet function 4 must satisfy

∫
4(t)dt = 0. The best known wavelet

family is the Daubechies one: Ck-functions with the K ≥ k first moments null. We
use Daubechies wavelets withK = 16. {4j,k; j ∈ Z, k ∈ Z} forms an orthonormal
basis in L2(R).

Let us decompose L2(R) in a growing sequence of closed subspaces · · · ⊂
Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · that approximate L2(R) such as Vj and Vj+1 are
similar, i.e., x2t ∈ Vj+1. Then {8j,k;8j,k(t) = 2j/28(2j t − k), k ∈ Z} forms
an orthonormal basis for the subspace Vj . The projection of x ∈ L2(R) on Vj can
be represented as

ProjVj (x) =
∑
k∈Z

cj,k8j,k , (33)

where cj,k = 〈x,8j,k〉.
Consider Wj so that Vj+1 = Vj ⊕Wj . {4j,k;8j,k(t) = 2j/24(2j t − k), k ∈ Z}

is an orthonormal basis ofWj . Since
⋃
j∈Z
Vj = L2(R) and

⋂
j∈Z
Vj = {0}, we see

that L2(R) = ⊕j∈ZWj . Since the Wis are mutually orthogonal, {4j,k; j ∈ Z, k ∈
Z} forms and orthogonal basis of L2(R). Therefore, all functions x ∈ L2(R) can
be written as

x =
∑
j∈Z

∑
k∈Z

dj,k4j,k , (34)

where dj,k = 〈x,4j,k〉.
A time series x length T = 2L, can be decomposed in a different basis,

according to the chosen scale level jM :

x =
2jM−1∑
k=0

cjM,k8jM,k +
L−1∑
j=jM

2j−1∑
k=0

dj,k4j,k , (35)

with jM ∈ {0, 1, 2, . . . , L− 1}.
If x is fractionally integrated with order d ∈ (− 1

2 ,
1
2), Jensen (1994) shows

that the coefficients of the wavelet decomposition (dj,k) are normally distributed
with zero mean and variance σ 2

j = σ 2s2d(j−1), where σ 2 is a positive constant
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proportional to σ 2
ε . This suggests the estimator of d that maximizes the likelihood

function

L(θ) =
L−1∏
j=jM

2j−1∏
k=0

(2πσ 2
j )

− 1
2 exp

(
− d

2
j,k

2σ 2
j

)
, (36)

θ ′ = (d, σ 2). (37)

The estimator d̂ is asymptotically efficient.
Jensen (1994) shows that the wavelet choice is of little importance for the esti-

mation of d. Likewise, the existence of additional noise (for instance, measure) has
only a minor effect.

Appendix B: Graphical Methods

To obtain evidence on the finite-sample properties of hypothesis testing proce-
dures, I use the graphical methods of Davidson and MacKinnon (1998a) that
use simulation methods. Consider a Monte-Carlo experiment in which R reali-
sations, denoted by {τj ; j = 1, 2, . . . , R}, of a test statistic t are generated using
a DGP that is a special case of the null hypothesis. All of the graphs are based
on the empirical distribution function, or EDF, of the P values of the τj , named
{pj ≡ p(τj ); j = 1, 2, . . . , R}. The definition of pj will vary. For the asymptotic
P value, if Fτ denotes the c.d.f. of the asymptotic distribution of τ , then

pj =
{

1 − Fτ (τj ) if the test is unilateral (at the right)
2 min{1 − Fτ (τj ), Fτ (τj )} if the test is bilateral.

(38)

For the bootstrap P value, see Equations (7) and (8).
The estimation of the c.d.f. of p(τ), at any point αi in the interval (0, 1), is

defined by

F̂ (αi) ≡ 1

R

R∑
j=1

I (pj ≤ αi), (39)

where I is an indicator function that takes the value 1 if its argument is true and 0
otherwise.

B.1. P VALUE PLOTS

The first graph that I use is a plot of F̂ (αi) against αi , referred to a P value plot
as in Davidson and MacKinnon (1998a). If F is the correct distribution of τ under
the null hypothesis, then the pj are distributed uniformly over (0, 1) for all j and
the resulting graph should be close to the 45 degree line. However, because all test
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statistics behave only approximately, the P value plots show the size distortions of
the tests.

B.2. SIZE-POWER CURVES

To compare the power of alternative test statistics, one must plot power against
true size. These curves are constructed using two EDFs, one for an experiment in
which the null hypothesis is true, and one for an experiment in which it is false.9

The two approximate EDFs are denoted F̂0 and F̂1, respectively. Plotting the points
(F̂0(αi), F̂1(αi)) generates a size-power curve on a correct size-adjusted basis.

There is an infinite number of DGPs that satisfy the null hypothesis. Since the
test statistics are not pivotal, the choice of the DGP used to correct the size can
matter greatly. Davidson and MacKinnon (1996) argues that a reasonable choice
is the pseudo-true null, which is the DGP that satisfies the null hypothesis and is
as close as possible, in the sense of the Kullback–Leibler Information Criterion, to
the DGP used to generate F̂1; see also Horowitz (1994a, b). I use the pseudo-true
null in the experiments.

Notes

1 Persistent memory as opposed to anti-persistent (d < 0).
2 THe ARFIMA model is presented in greater detail by Granger and Joyeux (1980) and Hosking

(1981).
3 It displays true test size against nominal size.
4 It displays true power against true (corrected) size.
5 If we do better estimations with ARMA(p, q) processes, they only better confirm the following

results. But the computing times are larger.
6 I use 1999 bootstrap replications for the three classical Dickey Fuller tests (without constant,

with constant, and with trend), and for the three augmented Dickey Fuller tests.
7 Asymptotic and classical bootstrap P values assigns equal probability to each tail. The bilateral

bootstrap does not.
8 To choose the values of the ks, see Higuchi (1988).
9 I use the same sequence of random numbers in both experiments to reduce experimental error.
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