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Abstract

Various methods for estimating the self-similarity parameter and/or the inten-
sity of long-range dependence in a time series are available. Some are more
reliable than others. To discover the ones that work best, we apply the differ-
ent methods to simulated sequences of fractional Gaussian noise and fractional
ARIMA(0,d,0). We also provide here a theoretical justification for the method
of residuals of regression.

1 Introduction

Time series with long-range dependence appear in many contexts, for example, in
the analysis of the traffic load in high speed networks (see Leland, Taqqu, Willinger
and Wilson [6]). Many methods for estimating the self-similarity parameter H or the
intensity of long-range dependence in a time series are available, some of which are
described in detail in the recent monograph of Beran [1]. They are typically validated
by appealing to self-similarity or to an asymptotic analysis where one supposes that
the sample size of the time series converges to infinity. Leaving the question of
robustness aside, we want to find out how well the methods function when applied
to fractional Gaussian noise and fractional ARIMA. These are idealized time series
for which the estimation methods should perform particularly well. We used a fairly
large sample size N = 10,000, generated 50 different realizations for each of several
values of H and compared the estimated values of H with the nominal ones, used in

the simulation.

*This research was partially supported by the NSF grants NCR-9404931 and DMS-9404093 at
Boston University.



The paper is organized as follows. In Section 2 we define both fractional Gaussian
noise and fractional ARIMA, and in Section 3, we describe briefly the estimation

methods. The results of the simulations are presented in Section 4.

2 The Time Series

We describe here fractional Gaussian noise (FGN) and fractional ARIMA (FARIMA),
the two types of time series that we use in the simulations. These are the simplest
models that display long-range dependence. The best way to introduce fractional
Gaussian noise is through its “parent” fractional Brownian motion {Bg(t), t > 0}.
Fractional Brownian motion is a Gaussian process with mean 0, stationary increments,

variance £ B% (1) = 127 and covariance
1
EBy(s)Bu(t) = 5{52}[ + 2 |s — t|2H} (2.1)

It is statistically self-similar in the sense that {Bg(at), ¢ > 0} has the same finite-
dimensional distributions as {a” By (t), t > 0} for all @ > 0. The crucial index is H,
a parameter which takes values between 0 and 1, called the self-similarity parameter.

Fractional Gaussian noise {X;, ¢ > 1} is the increment of fractional Brownian

motion, namely

X; = By(i+1) = Bu(i), i > 1.

It is a mean zero, stationary Gaussian time series whose autocovariance function
y(h) = EX; Xy is given by v(h) = 27H{(h + 1) — 2h2H 4 |h — 12"}, A > 0. An

important point about v is that it satisfies
y(h) ~ H2H —1)h*7? as h — oo (2.2)

when H # 1/2 ( ~ means “asymptotic to”). Since y(h) = 0 for Ao > 1 when
H = 1/2, the X;’s are white noise in this case. The X;’s, however, are positively
correlated when % < H < 1, and we say that they display long-range dependence
or long-memory. The index H, in this context, measures the intensity of long-range
dependence. The spectral density (Fourier transform of v) is
Az & 1
F(3) = Cp(2sin 5) 3 I3 2n kT

k=—c0

~ Cg M7 as A =0, (2.3)



where C'y 1s a constant.
Besides fractional Gaussian noise, we also consider fractional ARIMA(0,d,0). It
is defined formally as

Xi = A_dq, ) Z 1,

where the ¢; are independent, identically distributed normal random variables with
mean 0 and variance 1, and where A is the differencing operator A¢; = ¢, — ¢;_1. The

way to interpret X; = A~%; with a fractional value of d is as a moving average:

o
Xi: E Ci€i—j
7=0

where ¢; = I'(j +d){T(d)T'(5 +1)}7%, 7 > 1. Observe that ¢; ~ I'(d)~1j4! as j — oo,
and that the autocovariance function y(h) = EX; X4, of X; = A~%; satisfies for
0<d<1/2,

y(h) ~ Cgh**=1 as h — oo (2.4)

where Cy = 77'T'(1 — 2d)sin 7d. Thus, for large lags d, the autocovariance (2.4)
has the same power decay as the autocovariance (2.2) of fractional Gaussian noise.

Relating the exponents in (2.4) and (2.2) gives

d=H-1L (2.5)

2
The advantage of fractional Gaussian noise over fractional ARIMA is that many of
the asymptotic relations stated in the next section hold for finite sample sizes. This is
because fractional Gaussian noise is the increment of the self-similar process fractional
Brownian motion. The advantage of fractional ARIMA over fractional Gaussian noise

is that it posesses a particularly simple spectral density

1 Ay - 1
<2 sin —) . §|)\|_2d as A — 0. (2.6)

T =5 9

and that it is a particular case of fractional ARIMA(p,d,q), a versatile parametric

family of models. Fractional ARIMA(p, d, q) is defined through the equations
d(B)X; = O(B)A™ %, (2.7)

where ®(B) and O(B) involve autoregressive and moving average coefficients respec-
tively. Since we are not going to use (2.7) here, we refer the reader to Samorodnitsky

and Taqqu [12] and to their monograph [13] for more details.
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The fractional Gaussian noise series were simulated using the Durbin-Levinson al-
gorithm, which was implemented in S-Plus using C routines. This algorithm, which
is described for example in Brockwell and Davis [2], Chapter 8.2, provides an autore-
gressive representation of the Gaussian time series. The fractional ARIMA series were
produced by the arima.fracdiff.sim command built into S-Plus Version 3.2 (S-Plus is
a statistical package marketed by StatSci). The generation method is also based on
the Durbin-Levinson algorithm and is described in Haslett and Raftery [4], p. 12-13.

To generate a Gaussian time series X;, ¢+ = 1,---n with mean zero and auto-
covariance function ~, using the Durbin-Levinson algorithm, generate a sequence
€, © > 1 of independent and identically distributed N(0,1) random variables. Then
set X; = v(0)"%¢; and suppose that X;, X3, ..., X, have been obtained. Then

Xn+1 = qbn,an —I_ Tt —I_ qén,nXl —I_ U,}L/Zﬁn_}_l. (28)

The variances v;, ¢ = 1,---n and the coefficients {¢,,, 1 = 1,---n} are computed

recursively. Set vg = ¥(0) and v, = v, (1 — ¢nn)2 For n > 1,

n—1
1

qbn,n = |:’7(n) - Z qbn—l,]f)/(n - ])} v;—lv an,i — an—l,i - ¢n,n¢n—1,n—i for 1 < n.

i=1

3 Methods for Estimating H and d

3.1 Aggregated Variance Method

Divide the original time series X = {X;,7 > 1} into blocks of size m and average
within each block, that is consider the aggregated series

Xm(k) = % X (i) k=1,2,..., (3.1)
k—1)

1
m m+1

i=(
for successive values of m. The index k, labels the block. Then take the sample
variance of X™(k), k = 1,2,--- within each block. This sample variance is an
estimator of VarX(™)_ Since, for fractional Gaussian noise and fractional ARIMA,
VarX (™) ~ 5¢?>mP as m — oo where 3 = 2H — 2 < 0, we can obtain an estimate for
G, or H, by proceeding as follows.

For a given m, divide the data, Xi,..., Xy, into N/m blocks of size m, calculate



X0)(k), for k =1,2,..., N/m, and its sample variance

1 N/m N/m 2
Var X(™) = X0 (k)) Xx(m . 3.2
ar N ;;( (k) N/m Z (3.2)

Repeat this procedure for different values of m and plot the logarithm of the sample
variance versus log m. Choose values of m, {m;, 1 > 1}, that are equidistant on a log
scale, so that m;.i/m; = C, where C is a constant which depends on the length of
the series and the desired number of points.

Since Var X(™ is an estimate of VarX (™) the resulting points should form a
straight line with slope g = 2H — 2, —1 < 3 < 0. In practice, the slope is estimated
by fitting a line to the points obtained from the plot. It is assumed here that both
m and N are large, and that m < N, so that both the length of each block, and
the number of blocks is large. If X has (short-range or) no dependence, the slope
obtained should equal —1 (this is the slope of the reference line in Figure 1, below).

3.2 Differencing the Variance

Common types of non-stationarity include jumps in the mean and slowly decaying
trends. To distinguish them from long-range dependence, one can difference the

variance (see Teverovsky and Taqqu [14] for details), that is, study
Var X (1) — Var X (74)

where the m;’s are defined in the preceding subsection. Although differencing in-
troduces additional fluctuations, it often provides a way of detecting the types of
non-stationarity mentioned above. It is best used in conjunction with the basic ag-

gregated variance method.

3.3 Absolute Values of the Aggregated Series

This method is very similar to the method of aggregated variance. The data is split
in the same way, and the aggregated series (3.1) calculated. Instead of computing the

sample variance, one finds the sum of the absolute values of the aggregated series,

namely, 1 .
— X0 ()] 3.3
N/m = ‘ ( )| (3:3)



Then the logarithm of this statistic is plotted versus the logarithm of m. If the original
series has long-range dependence with parameter H, the result should be a line with
slope H — 1.

3.4 Higuchi’s Method

This method was suggested by Higuchi [5]. It involves calculating the length of a path
and, in principle, finding its fractal dimension D. The method is in fact very similar
to the method of absolute values of the aggregated series discussed above. It involves
taking the partial sums Y(n) = 3% | X, of the original time series {X;, 1 = 1,..., N},
(e.g., producing fractional Brownian motion from fractional Gaussian noise) and then
finding the normalized length of the curve, namely

-1 &[N —

e
=1

L(m) = N

m

—1 [(N—=i)/m]
] S VG4 km) = V(i + (k= 1)m),
m k=1
where N is the length of the time series, m is essentially a block size and [ | denotes the
greatest integer function. Then EL(m) ~ Cgm~P, where D = 2 — H. Thus a log-log
plot of L(m) versus m should produce a straight line with a slope of D =2 — H.

3.5 Residuals of Regression

This method which was used by Peng et al. [11] involves several steps. First, the series
is broken up into blocks of size m. Then, within each of the blocks, the partial sums
of the series are calculated. Call the partial sums within a block, Y (¢),s = 1,2, ...,m.
Fit a least-squares line to the Y (i) and compute the sample variance of the residuals.
This procedure is repeated for each of the blocks, and the resulting sample variances
are averaged. (Since the blocks are all of the same size, this is equivalent to calculating
the sample variance of the entire series.) We prove in the Appendix that for large m,
the resulting number is proportional to m2# for fractional Gaussian noise; a similar
result holds for fractional ARIMA. Thus, if the result is plotted on a log-log plot

versus m, we should get a straight line with a slope of 2H.

3.6 The R/S method

This is one of the better known methods. It is discussed in detail in Mandelbrot
and Wallis [9], Mandelbrot [7] and Mandelbrot and Taqqu [8]. For a time series,
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X = {X;,i > 1}, with partial sum Y(n) = ¥", X;, and sample variance S?*(n) :=
(1/n) X, Xi? — (1/n)?Y (n)?, the R/S statistic, or the rescaled adjusted range, is
given by :

R 1 t ; t
5= g0y [012% (yu) - gY(n)) - min <Y(t) - EY@))] L (34
For fractional Gaussian noise or fractional ARIMA,
E[R/S(n)] ~ Cyn™, (3.5)

as n — 0o, where (' is another positive, finite constant not dependent on n.

To determine H using the R/S statistic, proceed as follows. For a time series of
length N, subdivide the series into K blocks, each of size N/K. Then, for each lag n,
compute R(k;,n)/S(ki,n), starting at points k; = :N/K + 1,1 =1,2,..., such that
k; +n < N. For values of n smaller than N/K, one gets K different estimates of
R(n)/S(n). For values of n approaching N, one gets fewer values, as few as 1 when
n>N-—-N/K.

Choosing logarithmically spaced values of n, plot log[R(k;,n)/S(k;,n)] versus logn
and get, for each n, several points on the plot. This plot is sometimes called the pox
plot for the R/S statistic. The parameter H can be estimated by fitting a line to
the points in the pox plot. Since any short-range dependence in the series typically
results in a transient zone at the low end of the plot, set a cut-off point, and do not
use the low end of the plot for the purposes of estimating H. Usually, the very high
end of the plot is not used as well, because there are too few points on the plot at
the high end to make reliable estimates. The values of n that lie between the lower

and higher cut-off points are used to estimate H.

3.7 Periodogram Method

One first calculates
2

b (3-6)

)= ‘%X i
()_27TN = ]e

where A is a frequency, N is the number of terms in the series, and X; is the data.
Because I(A) is an estimator of the spectral density, a series with long-range depen-

|1—2H

dence should have a periodogram which is proportional to |A close to the origin.

Therefore, a regression of the logarithm of the periodogram on the logarithm of the
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frequency A should give a coefficient of 1 — 2H. This provides an approximation to
the parameter H. In practice, we use only the lowest 10% of the roughly N/2 = 5000
frequencies for the regression since the proportionality above only holds for A close

to the origin.

3.8 Modified Periodogram Method

This modification of the periodogram method compensates for the fact that on a
log-log plot, most of the frequencies fall on the far right, thus exerting a very strong
influence on the least-squared line fitted to the periodogram. The frequency axis
is divided into logarithmically equally spaced boxes, and the periodogram values
corresponding to the frequencies inside the box are averaged. Several of the values at
very low frequencies are left untouched, since there are so few of them to begin with.
In this study 0.1% of the points were left alone, and the rest divided into 60 boxes.
Then a line was fit to the first 80% of the resulting points. Because the periodogram
is very scattered we use a robustified least-squares ( the ltsreg in Splus), formally a
“least-trimmed squares regression” which minimizes the sum of the ¢ ~ n/2 smallest

squared residuals.

3.9 Whittle Estimator

The Whittle estimator is also based on the periodogram. It involves the function

[T 1)
Q)= | e ™ (3.7)

where [(A) is the periodogram (see (3.6)) and f(A;7n) is the spectral density at fre-

quency A, and where 7 denotes the vector of unknown parameters. The Whittle

estimator is the value of n which minimizes the function Q. When dealing with frac-
tional Gaussian noise or fractional ARIMA, n is simply the parameter H or d. If
the series is assumed to be FARIMA(p, d, q) (see (2.7)), then 7 includes also the un-
known coefficients in the autoregressive and moving average parts. This estimator
takes more time to obtain, but one also obtains confidence intervals. For details see
Fox and Taqqu [3] and Beran [1]. Unlike the other estimators discussed here, the
Whittle estimator is obtained through a non-graphical method. It also assumes that

the parametric form of the spectral density is known.



4 Description of the Results

We generated a realization of fractional Gaussian noise with H = 0.7 and 10,000
points. Figures 1 and 2 illustrate the log-log plot corresponding to each of the esti-
mation methods (except naturally Whittle).

However, no conclusions can be drawn on the basis of a single realization. For
each value of H = 0.6,0.7,0.8,0.9, we generated K=>50 realizations, each 10,000 long,
both for fractional Gaussian noise and fractional ARIMA(0,d,0). We also included
H = 0.5 for fractional Gaussian noise, that is, a white noise sequence. The estimated
values of d are expressed in terms of H by using (2.5).

For a given estimation method, we obtained K=50 estimated values of H, called

{Hy, k=1,---,50}. We computed their mean, standard deviation

1 K 1 n 2 1 K .
ol = V- (E H} — = (kz::l Hk) ) and MSE = fZ(Hk — Nominal H)Q.

The square root of MSE, the mean squared error, provides some information on the
bias. The nominal H is the value of H we used to generate the fractional Gaussian
noise (FGN) or fractional ARIMA (FARIMA). We did this for all the estimation
methods discussed above. The results are presented in Table 1.

The box plots are a graphical representation of the results of the Table. The
vertical axis in Figures 3 and 4 indicates the deviation from the nominal value of H.
For each method we have — (1) a box representing the middle 50% of the data. That
box contains a) a shaded region representing an approximate 95% confidence interval
about the median (see McGill, Tukey and Larsen [10]); b) the median represented by
the unshaded line in the middle of the shaded region; (2) “Whiskers” encompassing
approximately 95% of the data, and designated by dashed lines; (3) Outliers that fell
beyond the whiskers.

5 Appendix

We provide here a theoretical justification to the “Residuals of Regression” method
described in Subsection 3.5. For simplicity, we suppose that the time series is frac-
tional Gaussian noise with unit variance (the proof for fractional ARIMA is essentially

the same).
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Figure 1: Estimating a simulated FGN (H = 0.7).
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Figure 2: Estimating a simulated FGN (H = 0.7).
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Estimation Nominal H
method

FGN S-Plus FARIMA(0,d,0)
051]06 070809 6] .7]8].9
Variance H A495 | 588 | 687 | 772 | .844 || .591 | .686 | .773 | .840
o 026 | .027 | .024 | .022 | .031 || .031 | .036 | .028 | .032
VMSE | .026 | .029 | .027 | .036 | .063 || .031 | .038 | .039 | .068
DiffVar H A83 | .601 | .694 | .779 | .878 || .593 | .686 | .780 | .872
o 057 | .060 | .077 | .059 | .076 || .061 | .071 | .071 | .070
VMSE || .059 | .059 | .076 | .062 | .079 || .061 | .072 | .073 | .075
Absolute H A97 | 595 | 700 | 795 | .896 || .594 | .698 | .797 | .888
o 028 | .028 | .024 | .028 | .049 || .033 | .040 | .037 | .040
VMSE || .028 | .028 | .023 | .028 | .049 || .033 | .039 | .037 | .041
Higuchi H 499 | 595 | 702 | 795 | .896 || .596 | .698 | .797 | .887
o 027 | .027 | .024 | .028 | .049 || .032 | .040 | .037 | .041
VMSE || .027 | .027 | .024 | .028 | .049 || .032 | .040 | .037 | .042
Var. of H 491 | 589 | .686 | .782 | .884 || .583 | .677 | .772 | .865
Residuals o .012 | .015 | .014 | .018 | .016 || .016 | .016 | .017 | .017
VvMSE || .015 | .019 | .020 | .026 | .022 || .023 | .028 | .033 | .039
R/S H 535 | .609 | .687 | .766 | .821 || .614 | .688 | .760 | .823
o 023 | .024 | .020 | .024 | .027 || .023 | .022 | .022 | .026
MSE || .042 | .025 | .024 | .042 | .083 || .027 | .025 | .046 | .081
Periodogram || H H01 | .601 | .709 | .812 | .911 || .609 | .715 | .816 | .905
o .032 | .029 | .033 | .025 | .028 || .039 | .033 | .031 | .028
VMSE | .032 | .029 | .034 | .028 | .030 || .039 | .034 | .035 | .028
Modified H A82 | 595 | 690 | 796 | .896 || .598 | .699 | .808 | .896
Periodogram || & 062 | .048 | .044 | .058 | .048 || .051 | .053 | .049 | .052
VMSE || .064 | .048 | .044 | .057 | .048 || .051 | .052 | .049 | .051
Whittle H 501 | .601 | .699 | .800 | .900 || .601 | .700 | .800 | .897
G .006 | .006 | .005 | .007 | .007 || .008 | .007 | .009 | .007
VvVMSE | .006 | .006 | .005 | .007 | .007 || .008 | .007 | .009 | .008

Table 1: Estimation results for H using 50 independent realizations 10,000 long.
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Recall that, to apply this method, one divides the time series into blocks of size m.
Within each block one computes the partial sums {Y;, t = 1,---,m}, fits a regression
a + bt to these partial sums, and then computes the sample variance. The claim is

that the expectation of the sample variance is asymptotically proportional to m?H.

Theorem.

(Y; —a—bt)? ~ Crm?"?  as m — oo,
t=1

c —( 2 41 2 ) (5.1)
F=\9H+1 "H+2 H+1/)" '

E

1
m

where

Proof: Since the data is supposed to be fractional Gaussian noise, the partial sums
Yi’s are fractional Brownian motion, and thus their covariance is given by (2.1).

Moreover, the slope b and intercept a of a least-square line on Y; from 0 to m are

given by:
D v/ TEF 3 v/t (3 IV RS v/l Ik Do IR 52)
it = ) m3/12
1 & 1 & 1 & mb
=—>) Y, ——)> bt~—>» Y, — —. 5.3
m; ! m; m; ! 2 (5:3)

In the equation below, all of the sums are from ¢t =1tot =m

EZ:(Yt—a—bi‘)2
= E(ZYﬁ—|—Za2—|—2(bt)2—22a1/t—QthYt—l—QZabt)

B (YY) +mE(a 33E(62) —2B(a Y] Y)) = 2E(b 3 1)) + m? E(ab)

12

3

= B(S) +me (L zn__) T — 2B Y 1Y)
_2E< (ny) ——bZYt)—I-mQE( bZYt—m—bQ)

= BV + EE (> 1@)2 —mE (b3 V) + %E(b?) + %SE(Z)Q)
_%E (E}Q)Z +mE (bZYt) —2E(b3 1Y) + mE (523@) - m;E(b?)
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- B(LV)+ —E b?) —I—mE(bZYt)— E(XV) —2B0YY)
- E@W)*—[(m—) E@“TZ”)Q]
B (ZMZE——(Z&))
B (V) —2 B (D) - By
= E(XW)+ 2B (S) - DB (ST 4 B (DY)
a B (WY = D (V) - LB (S) - e (Sm)

PR (Y mYY)
= E(XW) - B (SN - e (T e (T )
_ A—iB—;—QD %C. (5.4)

In this equation we have represented several terms by A, B, C, and D respectively,

and we will calculate them below.

m2H+1

A=F myz):mtwgi.

12

SH 42 1 1 2H+2
~ m - = :
2H+1  (2H +2)(2H + 1) 2H +2

m m m m 1



1 [ m2H+3 N m2H+3 1§: DH 42 (/1(1 )2Hd /1 (1 )2Hd )
~ - - = —x x— | z(l—=z x
2\2m+2 " 220+ 1)) 2% 0 0

2H+3 1 1 2H+3 1 1
4 <H—|—1 + 2H—|—1) ~ 2(2H +3) (2H—|—1 a (2H—|—2)(2H—|—1))

12

2H+3 9 1
- <H—|—1_2H—|—1)'
Next

m 2 m m
D = E(Zth) :ZE%(j2H+1k—|—jk2H+1_jk|]-_k|2H)

t=1 =1 k=1
1 m m
= 52 2GR+ R SR WE
7=1 k=1 1=lk<y
1 [ m2 2H+3
~ (1 - Mg
2 (QH + 2) Z] / z) "o
m2H+4 m2H+4 1 1
= KH+1) 2H+4 <2H—|—1 N 2H—|—2)

m2H+4 . 1
AH + 1) ( B (H+2)(2H—|—1)) '

Therefore, going back to (5.4):

e 4 12
E> (Y —a-bl)’=A——B+ —20— —D = Cpm*"*,
v m m m3>
where Cp is given in (5.1). Dividing the terms in this last expression by m yields the
result.
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