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Determination of the Hurst exponent by use of wavelet transforms
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We propose a method for~global! Hurst exponent determination based on wavelets. Using this method, we
analyze synthetic data with predefined Hurst exponents, fracture surfaces, and data from economy. The results
are compared to those obtained with Fourier spectral analysis. When many samples are available, the wavelet
and Fourier methods are comparable in accuracy. However, when one or only a few samples are available, the
wavelet method outperforms the Fourier method by a large margin.@S1063-651X~98!09808-0#

PACS number~s!: 05.40.1j, 02.30.2f, 68.35.Bs, 61.43.Hv
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I. INTRODUCTION

It has been known for quite some time that self-affi
surfaces are abundant in nature. They can be found in v
ous areas of natural science such as surface growth@1,2#,
fractured surfaces@3#, and geological structures@4#, and bio-
logical systems@5#. Even the mercantile community has r
ported such structures@6# ~and references therein!.

Self-affine surfaces ind-dimensional space are describ
by a set of up tod21 roughness exponents. To know the
exponents have many important physical implications. F
of all, if we know all the roughness exponents, we have
control of the asymptotic statistical properties of the str
ture. Furthermore, for instance in fracture propagation@3#,
the exponents are essential in order to determine the un
sality class of the problem.

It is quite difficult to estimate these exponents from e
perimental data. Too often statements are made that
based on rather marginal data analysis. It is therefore im
tant to search for alternative ways of analyzing the dat
even if the new methods are not better than those alread
existence. More tools to analyze the data widens the po
bility to cross check the conclusions. It is in this spirit th
we present in this paper a new method for determin
roughness exponents. The strong point of this new metho
its excellent averaging properties that make it possible
extract roughness exponents with high precision even w
one or only a few samples are available.

Traditionally, the methods used to determine the s
affine exponents are done in (111) dimensions (d52). In
this case we have a single global~self-affine! exponent and it
is usually referred to as theHurst or roughness exponen
Over the past decade or so, several different methods h
been developed in order to measure this exponent from
perimental data~see Ref.@7# and references therein!. The
most popular method is theFourier power spectrum metho
~FPS! and we will use this method as ‘‘reference’’ here.
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systematic study of the quality of this and other tradition
methods is found in Ref.@7#. It should be pointed out that th
method described in this paper, like the FPS method, is o
valid for self-affine structure described by a global Hu
exponent.

The wavelet transform is an integral transform develop
in the early eighties in signal analysis and is today used
different fields ranging from quantum physics and cosm
ogy to data compression technology. Since the late eigh
wavelets have been an active research field in pure and
plied mathematics, and large theoretical progress has b
made. The wavelet transform behaves as a mathematica
croscope that decomposes an input signal into amplitu
that depend on position and scale. For this purpose local
functions, called wavelets, are being used. By changing
scale of the wavelet, one is able at a certain location to fo
on details at higher and higher resolution. By taking adv
tage of the central properties of self-affine functions, we
rive a scaling relation between wavelet amplitudes at diff
ent scales, from which the Hurst exponent can be extrac
The method is easily generalized to higher dimensions.

To our knowledge, two papers discuss wavelet ba
techniques in connection with Hurst exponent measurem
@8,9#. In @8#, the wavelet transform modulus maxima meth
is introduced, and in@9#, wavelet packet analysis is used
extract the Hurst exponent. The method we present here
fers from both of these. We would also like to mention tw
other papers that discuss self-affine fractals by using wa
lets @10,11#. However, these two papers are mainly co
cerned about the so-called inverse fractal problem for s
affine fractals and not measuring of Hurst exponents.

This paper is organized as follows. In Sec. II we revie
the central properties of self-affine surfaces, while in Sec.
the wavelet transform is reviewed. Section IV presents
derivation of the scaling relation for self-affine functions
the wavelet domain. In Sec. V this scaling relation is appl
to synthetic and experimental data, and Hurst exponents
extracted. Finally, in Sec. VI, our conclusion is presented

II. SELF-AFFINE SURFACES

As stated in the introduction, self-affine surfaces, wh
are generalizations of Brownian motion@12,13#, have statis-
2779 © 1998 The American Physical Society
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tical properties characterized by a set of exponents. Le
assume that we have a function,h(x), of one variable only
~for simplicity!, i.e., a fractional Brownian motion@12,13#.
Herex is the horizontal variable, whileh is the vertical one.
Self-affinity is defined through statistical invariance und
the transformation

x→lx, ~1a!

h→lHh. ~1b!

HereH is the Hurst exponent. By combining such transfo
mations, one can construct the affine group. Thus, self-af
surfaces are~statistically! invariant under the affine group
An alternative way of expressing this invariance is by t
relation

h~x!.l2Hh~lx!. ~2!

Here the symbol. means statistical equality. This form wi
prove useful later. The Hurst exponentH is limited to the
range 0<H<1. The lower limit comes from requiring th
surface width to decrease when smaller sections of the
face are studied~the opposite being unphysical!, while the
upper limit comes from assuming the surface to be asy
totically flat.

Equations~1! and~2! express that for self-affine function
one must rescale the horizontal and vertical direction diff
ently in order to have statistical invariance. Thus, self-affi
surfaces are by construction anisotropic in the horizontal
vertical direction, except whenH51 ~self-similarity!. The
Hurst exponent H expresses the tendency fordh
5@dh(x)/dx#dx to change sign. WhenH51/2 ~Brownian
motion!, the sign ofdh changes randomly, and the corr
sponding surface possesses no spatial correlations. W
1/2,H<1, the sign tends not to change, while for 0<H
,1/2 there is a tendency for the sign to change~anticorrela-
tion!. In both intervals there are long-range correlations fa
ing off as a power law. Surfaces withH.1/2 are said to be
persistent, and those withH,1/2 are antipersistent.

III. WAVELET TRANSFORM

Here we review some of the important properties
wavelets, without any attempt at being complete. Rather,
aim is to provide enough background for the discussion
follows. For a more complete treatment of wavelets, s
e.g., Ref.@14#.

In physics and mathematics there are many example
problems that are more easily solved in a new set of coo
nates~basis!, with the Fourier transform being the most f
mous one. Such transforms consist of calculating the am
tudes for each basis function of the new domain. As long
a set of functions is complete, it can be used as a root fo
integral transform.

The wavelet transform is a relatively new~integral! trans-
form. What makes this transform special is that the se
basis functions, known as wavelets, are chosen to be
localized ~have compact support! both in space and fre
quency. Thus, one has some kind of ‘‘dual localization’’
the wavelets. This contrasts with the situation met for
Fourier transform where one only has ‘‘monolocalization
us
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meaning that localization in both position and frequency
multaneously is not possible.

The wavelets are parameterized by ascale parameter~di-
lation parameter! a.0, and a translation parameter2`
,b,`. What makes the wavelet transform remarkable
that the wavelet basis can be constructed from one sin
function c(x) according to

ca;b~x!5cS x2b

a D . ~3!

In the usual terminology,c(x) is the mother function or
analyzing wavelet.

Given a functionh(x), the ~continuous! wavelet trans-
form is defined as

W @h#~a,b!5
1

Aa
E

2`

`

ca;b* ~x!h~x!dx. ~4!

Here c* (x) denotes the complex conjugate ofc(x). We
should emphasize that some authors use a somewhat d
ent definition when it comes to the prefactor. The spec
formulas we derive further on in analyzing the self-affi
surfaces depend on the definition we have chosen.

In order for a functionc(x) to be usable as an analyzin
wavelet, one must demand that it has zero mean. Howe
in nearly all applications it is in addition required to be o
thogonal to some lower-order polynomials, i.e.,

E
2`

`

xmc~x!dx50, 0<m<n. ~5!

Here the upper limitn is related to what is called the order o
the wavelet.

Unlike, for instance, the more familiar Fourier transform
the wavelet transform is not completely specified before
analyzing wavelet~i.e., the basis! is given. There are a large
number of possible candidates, but we will concentrate
clusively on one of the most popular families, namely, t
Daubechies wavelet family@14#.

In order for the wavelet transform to be useful for nume
cal calculations, it has to be accompanied by an effec
numerical implementation. Such an algorithm was develo
by Mallat, and the resulting transform is known as the d
crete wavelet transform@15#.

IV. AVERAGED WAVELET COEFFICIENT METHOD

As was shown in Sec. II, the defining feature of self-affi
profiles is the scaling property@cf. Eqs.~1! and~2!#. Accord-
ing to Eq. ~2! one should have W @h(x)#(a,b)
.W @l2Hh(lx)#(a,b) for a self-affine functionh(x) in the
wavelet domain. Here, in expressions likeW @h(x)#(a,b),
we have included thex dependence explicitly for conve
nience.

Hence after a simple change of variable one has
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W @h~x!#~a,b!.W @l2Hh~lx!#~a,b!

5
1

Aa
E

2`

`

l2Hh~lx!c* S x2b

a Ddx

5l2~1/2!2H
1

Ala
E

2`

`

h~x8!c* S x82lb

la Ddx8

5l2~1/2!2HW @h~x!#~la,lb!.

Thus, we have

W @h#~la,lb!.l~1/2!1HW @h#~a,b!. ~6!

Note that this scaling relation relies heavily on the definiti
~4!, so for other definitions of the wavelet transform, th
equation must be changed accordingly. What the scaling
lation ~6! expresses is that if we perform an~isotropic! res-
caling ~with factor l) of the wavelet domain of a self-affin
function, this is the same as rescaling the wavelet amplit
of the original domain with a factorl (1/2)1H.

From the definition of the wavelet transform, it follow
directly that the wavelet domain of a one-dimensional fu
tion is two dimensional; one dimension corresponding
scale and the other to space~translation!. So, for instance, for
a specified scale we have an infinite number of amplitu
corresponding to various translation parametersb. When one
is analyzing self-affine functions, like any fractal, it is th
scale rather then the translation that is of general interes
us. With this in mind, we propose toaverage outthe depen-
dency on the translation parameter in the wavelet domai
order to find a representative amplitude at a given scale.
suggest to use the following formula for the average

W@h#~a!5^uW @h#~a,b!u&b , ~7!

where ^•&b is the standard arithmetic mean value opera
with respect to the variableb. Here one could have chose
some other kind of averaging procedure such as geomet
or harmonic means. The absolute value is included in or
to get some kind of a ‘‘wavelet energy.’’ The main point
that one gets, by averaging the absolute value of the wav
coefficients, a representative ‘‘wavelet energy’’ at a giv
scale. If the data set is missing data or contains clear ano
lies in a region, the average could still be taken over wav
coefficients corresponding to wavelets localized outside
‘‘damaged’’ region. However, by doing so we have to dr
some of the largest scales completely because they in
tablely will include the unwanted region. The Fouri
method does not have this nice property, and a missing
region will destroy the whole data set.

Hence the scaling relation~6! becomes

W@h#~la!.l~1/2!1HW@h#~a!. ~8!

The strategy for the data analysis should now be clear:~1!
Wavelet transform the data into the wavelet domain.~2! Cal-
culate the averaged wavelet coefficientW@h#(a) according
to Eq.~7!. ~3! Plot W@h#(a) against scalea in a log-log plot.
A scaling regime consisting of a straight line in this pl
implies self-affine behavior of the data. The slope of t
straight line is1
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e-

e

-
o

s

to

in
e

r

al
er

let

a-
et
e

vi-

ta

s

We call this simple method theaveraged wavelet coeffi
cient ~AWC! method.

V. DATA ANALYSIS WITH THE AVERAGED WAVELET
COEFFICIENT „AWC … METHOD

A. Synthetic data

We are now in position to test our scaling relation~8! on
artificial and real data, and estimate the corresponding H
exponents. We start by performing an AWC analysis on a
of artificially generated self-affine profiles with predefine
Hurst exponents. The self-affine generator used in this w
is the Voss algorithm@16#, which is also known as the~iter-
ated! midpoint displacement algorithm. The quality of
given analyzing method is assessed by the difference
tween the Hurst exponent chosen for the Voss generator
the estimated value from the analysis.

In our first illustration of the practical performance of th
AWC method, we have generatedN5100 artificial profiles
with Hurst exponentH50.7 and lengthL54096. The wave-
let used here and from now on, if nothing different is ind
cated, is the Daubechies wavelet of order 12~Daub12!. We
will later demonstrate that this choice of wavelet order is n
crucial in any way@17# ~Fig. 4!. For each sample the mea
drift of the profile, defined as the line connecting its first a
last point, is subtracted. In Fig. 1 the results are presented
both the AWC and FPS density method. In both case
straight line fit is performed to the~log-log! data, with result-
ing slopes of, respectively, 1.1960.01 and22.3960.02.

FIG. 1. Hurst exponents estimated by@~a! and~b!# the averaged
wavelet method (HW) and@~c! and~d!# the Fourier power spectrum
density method (HF). All error bars in this and later figures ar
regression errors only.~a! The AWC functionW@h#(a) vs scalea
for Hurst exponentH50.7. The solid line is the regression line t
the scaling region. The estimated Hurst exponent isHW50.69
60.01. ~b! Wavelet estimated Hurst exponents (HW) for various
actual Hurst exponentsH. ~c! The power spectrum,P( f ) vs fre-
quency f for actual Hurst exponentH50.7. The solid line is the
regression fit. The estimated Hurst exponent isHF50.7060.01.~d!
Fourier estimated Hurst exponents (HF) for various actual Hurst
exponentsH. The number of samples per data point wasN5100,
and the length of the profiles wereL54096. The same profiles wer
used for both the wavelet and Fourier analysis.
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Theoretically these slopes should be1
2 1H51.2 @cf. Eq. ~8!#

and 2(112H)522.4 @12,13# for, respectively, the AWC
and FPS methods. Hence, the corresponding estimated H
exponents, in obvious notation, becomeHW50.6960.01 and
HF50.7060.01. Here we should emphasize that the err
indicated are only the regression errors in the actual reg
Errors due to different choices of regression regions are
included even if they typically are larger than the regress
error itself. The quality of the fit is indicated in Figs. 1~a! and
1~c!, by including the fitting function. Empirically we would
expect thetotal error of the Fourier power spectral densi
method to be larger then the corresponding error of the AW
method. This is so because the linear scaling region is sm
est for the FPS method. In order to quantify the behavior
different Hurst exponents, we have performed a correspo
ing analysis to the above, for various exponents in the ra
0,H,1. The results are shown in Figs. 1~b! and 1~d!. We
observe that there are good agreement between the a
and estimated exponents in the whole range of Hurst ex
nents independent of method.

It is often the case that one does not have many d
samples available for analysis, especially when dealing w
experimental data. To discuss this situation we have p
formed the same analysis as above, but now with a sma
number of samples;N550 andN55 ~Fig. 2! andN51 ~Fig.
3!. Still the correspondence with the input value is relative
good. However, for small number of samples the uncerta
in the slope determination becomes large, as illustrated
Figs. 3~a! and 3~c!. This tendency is much more explicit fo
the FPS method than for the AWC approach.

One could now ask how these results depend on the
cific order chosen for actual wavelet. In Fig. 4 we have
cluded a graph showing the AWC function,W@h#(a), for
different orders~i.e., smoothness! of the Daubechies wavele
family. With the above comment made on the true error
the Hurst exponent measurements, we conclude that w
the actual errors the AWC method does not seem to be
sitive to the order of the wavelet, at least not for t
Daubechies wavelet family. A nonsystematic study w

FIG. 2. The same as Figs. 1~b! and ~d!, but now with the fol-
lowing number of samplesN550 @~a! and ~b!# andN55 @~c! and
~d!#.
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other kind of wavelets does not change this conclusion.
We have also investigated the situation where the len

of the profiles varies. Our findings are compiled in Table
The results for the AWC method are generally in agreem
with the input values for system sizes larger or equal toL
5256. It should also be noted that the regression error~not
necessarily the actual error! generally decreases with increa
ing system size. This is as expected because when the sy
size increases the scaling region becomes larger, resultin
a better regression fit.

In summary, for the study of~clean! synthetic self-affine
data, we may conclude that the AWC method works well
is, in particular, a good choice when only a few number
samples are available, which is often the case in experim
tal situations.

B. Stability against noise, drift, and distortions

All real measurements are subject to noise, and dis
tions. These may have their origin in measuring uncerta

FIG. 3. The same as Fig. 1, but now with only one samp
N51.

FIG. 4. The AWC functionW@h#(a) vs scalea, for various
choices of wavelet order~Daubechies family! as indicated in the
figure. The data are for self-affine profiles with Hurst exponentH
50.7, and the number of samples used wasN5100. The length of
the profiles wasL54096. The extracted Hurst exponents wereH
50.6860.01 for Daub4, andH50.7060.01 in all other cases. The
curves are shifted relative to that of Daub12 for clarity.
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ties, instrumental noise and nonlinearities that might tra
form the signal in some way. The nonlinearities may co
from the response of the measuring devices used. Howe
it may also be that the variable studied is not the ‘‘goo
one. In order for a method of analysis to be useful for r
world data, it has to be stable with respect both to noise
distortions.

We start by studying distortions. Suppose that rather t
measuring thegenericself-affine functionh(x), we observe
F@h(x)#, i.e.,

h~x!→F@h~x!#, ~9!

which is a one-to-one transformation. This may for exam
result from distortion of the original signal through the i
strumentation. Note that we have not allowed for an expl
x dependence inF, because this may destroy the self-affin
~more about this later!. By other methods it can be demon
strated that the transformation~9! does not change the Hurs
exponent@4#. A qualitative way to understand this result
that, since the Hurst exponentH is related to the tendency o
dh to change sign~see earlier discussion!, the Hurst expo-
nent should be insensitive to transformations of the type~9!
as long asF is a relatively smooth functional. To demon
strate the stability of the AWC method to such distortion
we have performed a numerical experiment, where we h
put F@h(x)#5 log10@h(x)#, and then calculated the Hurst e
ponent fromF@h(x)#. The result is shown in Fig. 5, and a

TABLE I. Estimated Hurst exponents for the FPS (HF) and
AWC methods (HW) for different system sizesL. The predefined
Hurst exponent wasH50.7, and in all calculations the number o
samples used wasN5100. The Daubechies wavelet of order 1
was used.

L HF HW

64 0.5760.04 0.6760.05
128 0.6560.03 0.6660.03
256 0.6660.01 0.6960.02
512 0.6660.02 0.7060.02
1024 0.7060.01 0.7060.01
2048 0.7060.01 0.7060.01
4096 0.7060.01 0.7060.01

FIG. 5. ~a! The AWC function W@g#(a) vs scalea where
g(x)5 log10@h(x)# andh(x) is a self-affine function withH50.7.
The number of samples used wasN5100, and the length of the
profiles wasL54096. The solid line is the regression fit to the da
and the estimated Hurst exponent wasHW50.7060.01~b! Wavelet
measured Hurst exponentsHW for various actual exponents in th
range 0.1<H<0.9.
s-
e
er,
’
l
d

n

e

it

,
ve

can be seen, the Hurst exponent is unchanged within
numerical errors. The logarithmic function is a highly no
linear function, something that thus changes the input d
dramatically, thus providing a good testing ground of th
assumption.

In many situations one has signals possessing some
of drift. It has earlier been shown that such drifts can d
matically influence the reliability of the measured Hurst e
ponent@20#. In order to test our method in this respect, w
have perfomed an analysis where we have added linear@Figs.
6~a! and 6~b!# and quadratic drift@Figs. 6~c! and 6~d!# to the
self-affine component of the data. In this part of the analy
we have not subtracted the line connecting the first and
point of our data set ahead of the wavelet transform as
scribed earlier. For the linear case, there is only a weak
pendence, independent of scale, on the drift of the data@Figs.
6~a! and 6~b!#. However, for the quadratic case, the situati
is somewhat different. Here the drift creates a nice crosso
between the self-affine region, dominating at small sca
and the drift at large scales. This can be easily seen from
6~d!. The Hurst exponent obtained from the small-scale
gion isH50.7160.05, which fits quite well to the exponen
H50.70, of the self-affine component of the data. In bo
cases the amplitude of the drift seems to be of second
importance. Based on the above, we conclude that
method seems to work quite well for data with drift.

It is easy to see that if the functionalF has some explicit
dependence on the ‘‘horizontal’’ coordinate~i.e., x in our
case!, the self-affine correlation property may be destroy
Spatial noise of any kind has exactly this property. Sin

,

FIG. 6. The effect of added linear@~a! and ~b!# and quadratic
@~c! and~d!# drift to the data. In all cases the self-affine compone
of the data hadH50.7. ~a! One sample with linear drift@y(x)
50.5x#. ~b! The AWC functionW@h#(a) vs scalea for data with
linear drift of the type showed in~a!. The number of samples use
wasN5100 and the length of all the profiles wasL54096. The full
line is the regression line. The extracted Hurst exponent isH
50.7060.01. @~c! and ~d!# The same as~a! and ~b!, respectively,
but now for quadratic drift@y(x)50.05x2#. In ~c! we have also
included the drift separately~the dashed line!. Notice the well-
developed crossover between the larger and smaller scales in~d!.
The extracted Hurst exponent isH50.7160.05. The slopea of the
regression line~dot-dashed! for the large scales isa52.2960.04.
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such noise is usually always found in real data, it is imp
tant to investigate how sensitive the AWC algorithm is
such artifacts. In order to simulate this situation, we ap
the functional F@h(x),x#5h(x)1h(x), where h(x) is a
noise term, to clean self-affine datah(x), and then pro-
ceed with the AWC analysis. The amount of noise ad
ed to the data, i.e., the noise ratex, is defined asx
5(maxuh(x)u2minuh(x)u)/(maxuh(x)u2minuh(x)u).

In this paper we have chosen to work with white, pi
(1/f ), and brown (1/f 2) noise. Quite recently, Aguilar an
co-workers have pointed out that scanning tunneling micr
copy instrument noise is pink@21#. The quantitative effect of
addingx510% noise to a given self-affine profile is dem
onstrated in Fig. 7. The results of the AWC analysis for
case x510% of added white, pink, or brown noise a
shown in, respectively, Fig. 8, Fig. 9, and Fig. 10. In
cases~with x510%) we see that the AWC method extrac
the actual Hurst exponent quite well. Notice that for t
white noise case, only the lower scales, if any, seem to
considerably affected by the noise. It should be observed
for H50.7 @see Fig. 8~a!# a nice crossover to the~now
smaller! scaling regime is shown, while forH50.2 @Fig.
8~b!# this crossover is not visible. This behavior we ha
found to be quite systematic in the sense that the hig
Hurst exponents~in the range 0,H,1) the more pro-
nounced was the crossover, and the smaller the~self-affine!
scaling regime. The explanation for this behavior is the f
lowing: For Hurst exponents in the lower range 0,H,0.5,
~i.e., anticorrelation! the profiles are quite spiky with shar
tops and deep valleys. This means that the wavelet co
cients at low scales become large for low Hurst expone
with the consequence that the contribution of the noise
suppressed. As the Hurst exponent gets larger, and thu
profiles become more smooth, the effect of the noise at sm
scales will become more and more important resulting i
well-defined crossover. This crossover is easily seen in
8~a!.

For the white noise case, we just saw that mainly
small scales, if any, were affected by the noise. This situa
is somewhat different for the pink and brown noise ca
~see Figs. 9 and 10!. For these two noise types the who

FIG. 7. ~a! shows a self-affine profile withH50.7. To this pro-
file we addx510% white~b!, pink ~c!, and brown~d! noise. The
lower curve in~b!–~d! is the added noise.
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region is affected without, forx510%, introducing signifi-
cant changes over the non-noisy results@Figs. 9–10~b!#. As
the noise level increases@see Figs. 9–10~d!# larger deviation
from the none-noisy case starts to emerge. By noting
pink and brown noise is nothing but self-affine signals w
Hurst exponents of, respectively,H50 and H50.5, we
would expect that the estimated exponents are shifted
wards these values. This is supported by the observa
from Figs. 9~d! and 10~d! that the slopes, for a noisyH

FIG. 8. The effect of white noise added to the self-affine co
ponent of the data. The AWC functionW@h#(a) vs scalea for the
self-affine component of the data withH50.7 andH50.2 and a
noise levelx510% @~a! and ~b!#. The estimated Hurst exponen
for the curves shown in~a! and ~b! were, respectively,HW50.71
60.02 andHW50.2160.01. The extracted Hurst exponents wi
regression errors for Hurst exponents in the range 0,H,1 and
step 0.1~c!. The effect of the noise on the AWC function,W@h#
3(a), for various noise levelsx as indicated in~d!. The Hurst
exponent of the self-affine component wasH50.7 in this case. The
number of samples per data point wasN5100, and the length of the
profiles wasL54096.

FIG. 9. The same as Fig. 8, but now pink noise added. T
estimated Hurst exponents for the curves shown in Figs.~a! and~b!
are, respectively,HW50.6960.01 andHW50.2160.01.
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50.7 profile seem to decrease with increasing noise levex.
It should also be observed that there seems to be a m
well-developed crossover for the pink than for the bro
case. This stems from the fact that Figs. 9~d! and 10~d! are
shown forH50.7, giving the better ‘‘contrast’’ for the pink
limiting case ofH50.

Self-affine scaling behavior is usually only found over
limited region of space~or time!, and it is important to be
able to estimate these crossover scales. To be able to in
tigate the potential of the AWC method in this respect,
have generated some artificial self-affine profiles withH
50.7 and lengthL54096 and used a standard five-po
filter to destroy the self-affine correlations at small distan
~i.e., destroy correlations between 11 subsequent points!. For
the AWC method we should expect to see a crossove
scalesac.0.003, while for the FPS method the crossov
frequency is expected atf c50.09. As can be seen from Fig
11, this is indeed what we find. For the largest number
samples (N5100) the AWC and FPS method are equivale
but for only one sample the crossover is most easily seen
the wavelet method as shown in Figs. 11~c! and 11~d!.

C. Real data

As mentioned in the introduction, self-affine surfaces c
be found in many places in the sciences. Here we will
particular discuss two quite different examples, clearly de
onstrating the general presence of self-affine structures.

Our first example is taken from geology, and concerns
structure of a fractured granite surface@22#. The surface con-
tains 20503211 data points. One representative profile
this surface is given in Fig. 12~a!. The results of the wavele
and Fourier analysis, using the methods described earlie
this paper, are collected in Figs. 12~b! and 12~c!. We see that
there are nice scaling regions in both cases indicating tha
fractured granite surface is indeed self-affine. The Hurst
ponents, obtained by a regression fit to the scaling region
HW50.8160.02 andHF50.7960.03, respectively, for the
AWC and FPS methods. Note that also here only the reg
sion error is indicated and that the ‘‘true error’’ is somewh

FIG. 10. The same as Fig. 8, but now brown noise is added.
estimated Hurst exponents for the curves shown in~a! and ~b! are,
respectively,HW50.6960.01 andHW50.1960.01.
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larger. The results for the two methods are consistent
coincide with the results of other studies of fracture gran
surfaces@23#. The reason for the good agreement betwe
the two methods, and the good quality of both regression
is due mainly to the large number of samples available,
the dataset contains 211 one-dimensional profiles of len
2050. It is interesting to observe that the exponent for
fractured granite surface reported here is in complete ag
ment with earlier speculations that fracture surfaces sho
have a universal Hurst exponent ofH50.8 @3,24,25#

e FIG. 11. The wavelet@~a! and ~c!# and Fourier@~b! and ~d!#
analysis of synthetic data with Hurst exponentH50.7 after apply-
ing a five-point filter to them. In~a! and~b!, the results are average
over N5100 samples, while in~c! and ~d! only one sample (N
51) is used. In all casesL54096. The solid lines are the regressio
fits to the scaling regions. The crossovers are clearly seen in
cases. Theoretically the crossover values areac50.003 and f c

50.09 for the wavelet and Fourier method, respectively.

FIG. 12. ~a! One single representative profile from the gran
fracture. The number of points in the profile isL52050.~b! AWC
analysis of the entire set of (20503211) data points. The solid line
is the regression fit to the scaling region. The corresponding H
exponent isHW50.8160.02.~c! FPS analysis of the data. Here th
solid line corresponds to a Hurst exponentHF50.7960.03.
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Unfortunately, the availability of a large number o
samples is rare, and in some cases it is not even approp
to talk about several samples. In order to illustrate this po
we have included share prices for the Italian automob
manufacturer FIAT taken from the Milan Stock Exchan
for the period from September 1988 to May 1991 with thr
quotes per day@26# @Fig. 13~a!#. Observe that here only on
sample for a given time period is available. The result of
corresponding analysis is given in Figs. 13~b! and 13~c!. The
estimated Hurst exponents areHW50.6560.03 and HF
50.6260.06 from, respectively, the AWC and FPS met
ods. These two results are consistent, but there are notice

FIG. 13. ~a! Fiat share prices taken from the Milan Stock E
change for the period from September 1988~day 1! to May 1991,
with three observations per day.~b! The result of the wavelet analy
sis for the data in~a!. The estimated Hurst exponent, correspond
to the solid line, isHW50.6560.03. ~c! The result of the Fourier
analysis for the data in~a!. The Hurst exponent in this case isHF

50.6260.06. Note the more well-behaved scaling region for
wavelet method as compared to the Fourier method.
.

ate
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e

e
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differences in the accuracy of the regression fits for the t
methods. This is most easily seen by comparing Figs. 13~b!
and 13~c! by visual inspection. The error bars associat
with the FPS analysis, based solely on the regression an
sis, are, in particular, underestimated. It is difficult to ident
a scaling region at all. We find it very interesting to obser
that a Hurst exponentH50.65 is observed in the stock ma
ket simulations by Bak, Paczuski, and Shubik@6# when using
the Urn model with volatility feedback.

This example is, in our view, a very good example of t
power of the AWC method in cases where few samples
available, and we believe it to have the potential of becom
a useful method in practical situations.

VI. CONCLUSIONS

We have introduced, derived and tested a new sim
method for Hurst exponent measurements based on
wavelet transform. It has been compared to the Fou
power spectrum method where appropriate. We find that
two methods performs approximately equally for large nu
ber of samples. However, for small numbers of samples
new method outperforms the more traditional Fourier tra
form based method. The AWC method are also demonstr
to handle noisy and experimental data in a satisfactory m
ner.
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