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We study the long-term memory in diverse stock market indices and foreign exchange rates using
the Detrended Fluctuation Analysis(DFA). For all daily and high-frequency market data studied,
no significant long-term memory property is detected in the return series, while a strong long-term
memory property is found in the volatility time series. The possible causes of the long-term
memory property are investigated using the return data filtered by the AR(1) model, reflecting
the short-term memory property, and the GARCH(1,1) model, reflecting the volatility clustering
property, respectively. Notably, we found that the memory effect in the AR(1) filtered return and
volatility time series remains unchanged, while the long-term memory property either disappeared
or diminished significantly in the volatility series of the GARCH(1,1) filtered data. We also found
that in the high-frequency data the long-term memory property may be generated by the volatility
clustering as well as higher autocorrelation. Our results imply that the long-term memory property
of the volatility time series can be attributed to the volatility clustering observed in the financial
time series.
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I. INTRODUCTION

Recently, studies on the hidden or less understood fea-
tures of financial time series such as the long-term mem-
ory have been attempted through an interdisciplinary ap-
proach with much attention [1,2].

The presence of the long-term memory means that the
market does not immediately respond to an amount of in-
formation flowing into the financial market, but reacts to
it gradually over a period. Therefore, past price changes
can be used as a significant information for the predic-
tion of future price changes. In addition, this observation
is significant in that it can provide negative evidence as
well as a new perspective to the Efficient Market Hy-
pothesis (EMH) [6]. Previous works have not found a
significant long-term memory in the returns of financial
time series. However, most of their volatility time series
are found to show a strong long-term memory [13-21].
The analysis of the return time interval in the stock re-
turns showed that the long-term memory of the volatility
is closely related to the clustering effect of return time
intervals [11,12]. In order to investigate the presence of
the long-term memory property in financial time series
and its possible causes, we used diverse daily and high-
frequency market indices. We used daily data from eight
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international stock market indices from 1991 to 2005 and
the foreign exchange rates of 31 countries to the US dol-
lar from 1990 to 2000, as well as high-frequency data in-
cluding the KOSPI 1-minute market index from 1995 to
2002, the KOSDAQ 1-minute market index from 1997 to
2004, and the foreign exchange rates of six nations to the
US dollar from 1995 to 2004. To quantify the long-term
memory property in financial time series, we utilized the
Detrended Fluctuation Analysis (DFA), which was intro-
duced by Peng et al. [22]. Previous studies on financial
time series has found diverse features that deviate from
the random walk process, such as autocorrelation, volatil-
ity clustering, fat tails and so forth, which were called as
stylized facts [3,4,5].

Among the several stylized facts, we used data fil-
tered through the Autoregressive (AR) model and the
Generalized Autoregressive Conditional heteroscedastic-
ity (GARCH) model, reflecting short-term memory and
volatility clustering, respectively, which are widely used
in the financial field [8,9]. We found that for all types of
data used in this paper, Hurst exponents of the return
series follow a random walk process, while the volatility
series exhibit the long memory property with Hurst ex-
ponents in 0.7 ≤ H ≤ 0.9. In order to test the possible
causes of the occurrence of the long-term memory prop-
erty observed in the volatility time series, we used the
returns series filtered through AR(1) and GARCH(1,1)
models. The long-term memory property was no longer
observed in the volatility time series of the daily data
filtered through the GARCH(1,1) model, while it is con-
siderably reduced with 0.6 ≤ H ≤ 0.65 in the volatility
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time series of the high-frequency GARCH(1,1) filtered
data. On the other hand, the volatility time series of
the daily and high-frequency data filtered through the
AR(1) model still show the strong long-term memory
property observed in the volatility time series of original
time series. In order to investigate the possible causes of
the differences between results from the daily and high-
frequency data, we studied the autocorrelation function
for the KOSPI 1-minute market index and the JPY/USD
5-minute foreign exchange rate data. We find that the
autocorrelation function from the high-frequency data
exhibits a higher correlation than that from the low-
frequency data.

In the next section, we describe the financial data used
in the paper for analysis. In Section III, we introduce
the DFA method, the GARCH model and the AR model
often used in the analysis of financial time series. In
Section IV, we present the results on the presence of the
long-term memory property and the possible causes of its
generation in the financial time series. Finally, we end
with the summary.

II. DATA

We used the eight daily international market of 7 coun-
tries indices from 1991 to 2005 (from the Yahoo financial
web-site) and the foreign exchange rates of 31 countries
to the US dollar from 1990 to 2000 (from the FRB web-
site), and as high-frequency data, the KOSPI 1-minute
market index in the Korean stock market from 1995 to
2002, the KOSDAQ 1-minute market index from 1997 to
2004 (from the Korean Stock Exchange), and the for-
eign exchange rates of six countries to the US dollar
from 1995 to 2004 (from Olson). The seven interna-
tional market indices are USA (S&P 500, NASDAQ),
Hong Kong (Hangseng), Japan (Nikkei225), Germany
(DAX), France (CAC40), UK (FTSE100), and Ko-
rea (KOSPI). The daily data of the foreign exchange
rates are taken from a total of 31 countries, including
ten countries (ATS, BEF, FIM, FRF, DEM, IEP, ITL,
NLG, PTE, and ESP) from 1990 to 1998, twenty coun-
tries (AUD, CAD, CNY, DKK, GRD, HKD, INR, JPY,
KRW, MYR, NZD, NOK, SGD, ZAR, LKR, SEK, CHF,
TWD, THB, and GBP) from 1990 to 2000, and one
country (BRL) from 1995 to 2000. The 5-minute data
of the foreign exchange rates were taken from six coun-
tries: Euro (EUR), UK (GBP), Japan (JPY), Singapore
(SGD), Switzerland (CHF), and Australia (AUD). As the
financial time series data employed in this investigation,
we used the normalized returns, Rt, from the price data,
yt, as in previous studies ;

Rt ≡
ln yt+1 − ln yt

σ(rt)
, (1)

where σ(rt) is the standard deviation of the return. The
normalized returns are composed of the magnitude time

series, |Rt|, and the sign time series, Signt, as follows

Rk,t = |Rk,t| × Signk,t, (2)

where Rk,t is the return series of the k-th market index
calculated by the log-difference, |Rk,t|, the magnitude se-
ries of the returns of the k-th market index, and Signk,t,
the sign series with +1 for the upturn and −1 for the
downturn. The volatility of the returns can be studied
though the magnitude series, |Rt|. In this analysis, we
utilized the return series and the volatility series, respec-
tively. Here, for the return series, we make use of the
returns, Rt, from Eq.1 and for the volatility series, we
used its magnitude time series, |Rt|.

III. METHODS

A. Detrended Fluctuation Analysis

In this paper, we utilized the Detrended Fluctuation
Analysis(DFA) method proposed by Peng et al. to quan-
tify the long-term memory property in the financial time
series [22]. The Hurst exponent calculated through the
method of DFA can be measured as follows. In the first
step, the accumulated value after the subtraction of the
mean, x̄, from the time series, x(i), is defined by

y(i) =

N
∑

i=1

[x(i) − x̄]. (3)

where N is the number of the time series. In the second
step, the accumulated time series is divided into boxes of
the same length n. In each box of length n, the trend is
estimated using the ordinary least square method. That
is, DFA(m) is determined, where m is the filtering order.
In each box, the ordinary least square line is expressed as
yn(i). By subtracting yn(i) from the accumulated y(i) in
each box, the trend is removed. This process is applied
to every box and the fluctuation magnitude is defined as

F (n) =

√

√

√

√

1

N

N
∑

i=1

[y(i) − yn(i)]2. (4)

The process of the second step is repeated for every
scale n and the following scaling relationship is defined
by

F (n) ≈ cnH , (5)

where H is the Hurst exponent. The Hurst exponent
ranges from 0 to 1, which reflects different correlation
characteristics. If 0 ≤ H < 0.5, the time series is anti-
persistent. If 0.5 < H ≤ 1, it is persistent. In the case of
H = 0.5, it becomes a random walk.
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B. Generalized Autoregressive Conditional

Heteroscedasticity and Autoregressive Model

The GARCH model proposed by Bollerslev has been
widely used in the financial literature up to now, which
includes the volatility clustering property observed in the
empirical financial time series [9]. The volatility is a pa-
rameter basically used to evaluate the risk of diverse fi-
nancial assets, so the reliable estimation of volatility is a
significant task in the financial field. The GARCH model
introduced by Bollerslev is defined as follows:

yt = µ + ǫt, ǫt ≡ ηtσt,

σ2
t = α0 +

q
∑

i=1

αiǫ
2
t−i +

p
∑

j=1

βjσ
2
t−j , (6)

α0 > 0, αi, βi ≥,
∑

i

αi +
∑

j

βj < 1,

where ǫt is a random process with zero mean, and unit
variance, yt is the return and σ2

t is the volatility at time
t. As shown in Eq. 6, the conditional heteroscedasticity
based on past volatility, σ2

t , can be explained not only by
the square of an error term with a lag (ǫ2t−i, i = 1, 2, ...., p)
but also by the conditional heteroscedasticity with a lag
(σ2

t−j , j = 1, 2, ...., q ). In general, the case with p=1 and
q=1 are often considered in empirical investigations of
the financial field, so that the GARCH(1,1) model is used
in our analysis. In addition, we obtained the standard-
ized residual term (ǫ∗t = ǫt/σ∗

t , where σ∗
t is the normal-

ized standard deviation) after filtering the return data
through the GARCH(1,1) model and computed the Hurst
exponent by the DFA method. As the GARCH model
reflects the volatility clustering property included in the
financial time series, the residual term, ǫ∗t , turns out to
be the time series data without the volatility clustering
property. On the other hand, the AR(m) model reflects
the autocorrelation in financial time series, which corre-
sponds to the short-term memory. The AR(m) model is
defined by

rt = α0 +

m
∑

k=1

βkrt−k + ǫt, (7)

where ǫt is the normal distribution with the zero mean
and the variance one. In particular, in the case with β1 =
1 in the AR(1) model, rt follows a random walk process.
In this paper, we employ the AR(1) model often used in
the empirical studies in financial fields. After filtering
the return data through the AR(1) model, we obtain the
residual term, ǫt. Since the AR(1) model reflects the
short-term memory property contained in the financial
time series, the residual term, ǫt, becomes the time series
without the short-term memory property.
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FIG. 1: The Hurst Exponent of the original and magnitude
(volatility) time series for the fractional brownian motion
(FBM). The red circles denote the Hurst exponents of the
magnitude time series, the blue circles the Hurst exponents
of the original time series, and the dashed lines the theoreti-
cal Hurst exponents. Hurst exponents are averaged over 100
simulations of 20,000 data points.

IV. RESULTS

In this section, we investigate the long-term memory
property using the DFA method in the financial time se-
ries of stock markets and foreign exchange markets and
present the results on the possible causes of its generation
using data filtered through the AR(1) and GARCH(1,1)
models. First, we create time series data with only
the specified memory property, with the given Hurst ex-
ponent, using the Fractional Brownian Motion (FBM)
model. In Fig.1, we shows computed Hurst exponents
through the DFA method from the data decomposed into
the return time series and the volatility time series, re-
spectively. In Fig.1, the Hurst exponents of the volatility
time series are larger than those of the return time se-
ries in the region with 0 ≤ H < 0.5, but are smaller in
the region with 0.5 < H ≤ 1. In Fig. 2, we show that
the long-term memory property of the returns and the
volatility by using the DFA method on daily and high-
frequency stock market data. The results on the possi-
ble causes of its generation are also presented using the
data filtered through the AR(1) and GARCH(1,1) mod-
els. Fig. 2(a) shows the Hurst exponents measured from
the return and the volatility of eight daily international
market indices. All the Hurst exponents from the orig-
inal return time series (red circles), the AR(1) filtered
data (green triangles) and the GARCH(1,1) filtered data
(black crosses) give H ≃ 0.5, so that there is no the long-
term memory property. On the other hand, we observe



4

0 1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

H

Country

return
magnitude
return(GARCH(1,1))
magnitude(GARCH(1,1))
return(AR(1))
magnitude(AR(1))

(a) 

KOSPI KOSDAQ
0.4

0.5

0.6

0.7

0.8

0.9

1

Markets

returns
magnitude
returns(GARCH(1,1))
magnitude(GARCH(1,1))
returns(AR(1))
magnitude(AR(1))

(b) 

FIG. 2: (a) Hurst exponents of the returns and volatility of
international market indices [1: France (CAC 40), 2: Ger-
many (DAX), 3: United Kingdom (FTSE 100), 4: Hong
Kong (HangSeng), 5: Korea (Kospi), 6: America (Nasdaq),
7: Japan (Nikkei 255), and 8: America (S&P 500)]. (b) Hurst
exponents of the returns and volatility of KOSPI and KOS-
DAQ one-minute indices. The red circles and squares denote
the return and the magnitude of original time series. The no-
tation (GARCH(1,1)) denotes the time series filtered by the
GARCH(1,1) model(black crosses and diamonds) and the no-
tation (AR(1)), by the AR(1) model.(green triangles, inverse
triangles)

a strong long-term memory property with 0.8 ≤ H ≤ 0.9
in both the original data on the volatility time series
(red squares) and the AR(1) filtered data (green inverse
triangles). Notably, we discover no the long-term mem-
ory property with H ≃ 0.5 in the GARCH(1,1) filtered
data (black diamonds). These results suggest that the
volatility clustering may be a possible cause for the gen-
erations of the long-term memory property observed in
the volatility time series.

Fig. 2(b) shows the Hurst exponent measured for
the returns and the volatility of the one-minute high-
frequency market indices of Korea, KOSPI and KOS-
DAQ. The long-term memory property cannot be ob-
served in the return time series as shown in Fig. 2(b).
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FIG. 3: (a)Hurst exponents of the returns and volatility
of daily foreign exchange rates of 31 countries. (b) Hurst
exponents of the returns and volatility of 5-minute foreign
exchange rate. [1:Euro(EUR), 2:UK(GBP), 3:Japan(JPY),
4:Singapore(SGD), 5:Switzerland(CHF), 6:Australia(AUD)].
The red circles and squares denote the return and the magni-
tude of original time series. The notation (GARCH(1,1)) de-
notes the time series filtered by the GARCH(1,1) model(black
crosses and diamonds) and the notation (AR(1)), by the
AR(1) model.(green triangles, inverse triangles)

Furthermore, the original volatility time series (red
squares) and the AR(1) filtered data (green inverse tri-
angles) display a similar strong long-term memory prop-
erty. However, in this case the GARCH(1,1) filtered
data (black diamonds) still possess the long-term memory
property with H ≈ 0.65 albeit reduced from H ≈ 0.75
observed in the original data. Note that it is hard to ob-
serve this difference in low-frequency financial time series
like daily data.

Fig.3 show the results similar to ones in Fig. 2 for the
case of daily and high-frequency foreign exchange mar-
ket data. Fig. 3(a) shows the Hurst exponents from
daily data for foreign exchange rates to the US dollar
for 31 countries from 1990 to 2000. Fig. 3(b) shows
the Hurst exponents from 5-minute foreign exchange rate
data to the US dollar from 1995 to 2004. In Fig. 3, all
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FIG. 4: (a) and (b) Autocorrelation functions for high-
frequency and low-frequency data from the KOSPI 1-minute
indices and JPYUSD 5-minute indices in a log-log plot. The
red circles and black squares denotes high-frequency and low-
frequency time series.

the Hurst exponents from the original return time se-
ries (red circle), AR(1) filtered data (green triangles),
and GARCH(1,1) filtered data (black crosses) become
H ≈ 0.5, so that the long-term memory property is not
present. The long-term memory property, however, is
found in the volatility time series (red square) and the
AR(1) filtered data (green inverse triangles). On the
other hand, in the case of the GARCH(1,1) filtered data
(black diamonds), the long-term memory property is not
observed with, H ≈ 0.5, in daily data. However, in the
5-minute data, the long-term memory property is found
to persist with, H ≈ 0.6, albeit reduced. This result is
similar to the case of stock market indices.

All the financial time series data including the stock
markets and the foreign exchange markets used in this
investigation show a significant long-term memory prop-
erty in the volatility time series, while not in the return
time series. We found that the long-term memory prop-
erty disappeared or diminished for the GARCH(1,1) fil-
tered data in the volatility time series. This suggests
that the long-term memory property in the volatility

time series can be attributed to the volatility clustering
empirically observed in the financial time series. Then,
we observed the difference between the results of the
GARCH(1,1) filtered data in using low-frequency data,
like daily data, and those in using high-frequency data,
like 5-minute or 1-minute data. This difference does not
show up well in the low-frequency financial time series
but makes us consider the possible presence of other addi-
tional factors that can be observed in the high-frequency
financial time series.

In Fig. 4, we shows in a log-log plot the auto-
correlation function for high-frequency and low-frequency
data from the KOSPI 1-minute index from 1995 to 2002
and each of the USD/YEN 5-minute index from 1995 to
2004. In Fig. 4 (a) and (b), the red circles and the black
squares denote the high-frequency and the low-frequency
data, respectively. We found that the autocorrelation
function from high-frequency data has a higher autocor-
relation than that from low-frequency data. The volatil-
ity clustering property is a significant factor generating
the long-term memory property of the volatility time se-
ries. In the high-frequency financial time series, other
additional attributes such as a higher correlation, be-
sides the volatility clustering property, may be additional
causes of its generation.

V. CONCLUSION

In this paper, we have investigated the long-term mem-
ory property and the possible causes of its generation in
the return time series and the volatility time series using
both low-frequency (daily) and high-frequency (5-minute
and 1-minute) financial time series data of stock mar-
kets and foreign exchange markets. We employed the
detrended fluctuation analysis (DFA) method to quan-
tify the long-term memory property and the AR(1) and
GARCH(1,1) models to remove the short-term memory
property and the volatility clustering effect, respectively,
as the possible causes of its generation.

We found that the returns time series employed in this
investigation have the Hurst exponent with H ≈ 0.5,
while the volatility time series have a long-term mem-
ory property with Hurst exponent with 0.7 ≤ H ≤ 0.9.
To investigate the possible causes of the generation of
the long-term memory observed in this volatility time se-
ries, we employed the AR(1) and GARCH(1,1) models.
We found that the observed long-term memory property
disappeared or diminished for the GARCH(1,1) filtered
data. This suggests that the long-term memory property
observed in the volatility time series can be attributed
to the volatility clustering property. The previous re-
search attempted to explain qualitatively that the long-
term memory property of the volatility time series is re-
lated to the volatility clustering effect. Our results sug-
gest that the long-term memory of volatility time series
is related to the volatility clustering, one of the stylized
facts. Furthermore, in the case of the high-frequency fi-



6

nancial time series, long-term memory property may be
attributed to a higher autocorrelation and other factors
such as long-tails in financial time series, which warrants
further study.

Acknowledgments

This work was supported by a grant from the
MOST/KOSEF to the National Core Research Center for

Systems Bio-Dynamics (R15-2004-033), and by the Ko-
rea Research Foundation (KRF-2005-042-B00075), and
by the Ministry of Science & Technology through the Na-
tional Research Laboratory Project, and by the Ministry
of Education through the program BK 21.

[1] J.P Bouchaud and M. Potters, Theory of Financial Risks:
from statistical Physics to Risk Managements, Cam-
bridge University Press, Cambridge (2000)

[2] R.N. Mantegna and H.E. Stanley, An Introduction to
Econophysics: Correlations and Complexity in Finance,
Cambridge University Press, Cambridge (1999)

[3] H. Ghashghaie, W. Breymann, J.Peinke, P.Talkner, and
Y. Dodge, Nature 381, 767 (1996)

[4] Xavier Gabaix, Parameswaran Gopikrishnan, Vasiliki
Plerous, & H. Eugene Stanley, Nature 423, 267 (2003)

[5] Rama Cont, Quantitative Finance 1, 223 (2001)
[6] E.F. Fama, Journal of Finance 25, 383 (1970)
[7] F. Black and M. J. Scholes, Polit, Econ. 81, 637 (1973)
[8] R.T. Baillie, T. Bollerslev, and H.O. Mikkelsen, Journal

of Econometrics 74, 3 (1996)
[9] T. Bollerslev, Journal of Econometrics 31, 307 (1986)

[10] William F. Sharpe, Journal of Finance 25, 418 (1970)
[11] Armin Bunde, Jan F. Eichner, Jan W. Kantelhardt, and

Shlomo Havlin, PRL 94, 048701 (2005)
[12] Kazuko Yamasaki, Lev Muchnik, Shlomo Havlin, Armin

Bunde, and H. Eugene Stanley, PNAS 102, 9424 (2005)

[13] C.W.J. Granger and R. Joyeux, Journal of Time Series
Analysis 1, 15 (1980)

[14] Tomas Lux, Quantitative Finance 1, 560 (2001)
[15] Rogerio L. Costa, G.L. Vasconcelos, Physica A 329. 231

(2003)
[16] D.O. Cajuerio and B.M. Tabak, Chaos, Solitons and

Fractals 22, 349 (2004)
[17] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.K.

Peng, & H.E. Stanley, Phys. Rev. E 60, 1390 (1999)
[18] B.B. Mandelbrot, Quantitative Finance 1, 113 (2001)
[19] H.E. Hurst, Transactions of the American Society of Civil

Engineering 116, 770 (1951)
[20] B.B. Mandelbrot and J.W. Van Ness, SIAM. Rev. 10,

422 (1968)
[21] T.D. Matteo, T. Aste and M.M. Dacorogna, Journal of

Banking and Finance 29, 827 (2005)
[22] C.K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin,

M. Simons, and H. E. Stanley, Phys. Rev. E 47, 3730
(1993)


