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Abstract. The paper is concerned with the estimation of the long memory parameter in a condi-
tionally heteroskedastic model proposed by Giraitis et al. (1999b). We consider estimation methods
based on the partial sums of the squared observations, which are similar in spirit to the classical
R/S analysis, as well as spectral domain approximate maximum likelihood estimators. We review
relevant theoretical results and present an empirical simulation study.
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1. Introduction

Long memory, a term commonly used to describe persistent dependence between
time series observations as the lag increases, has been shown to be present in geo-
physical and, more recently, in network traffic data. It is, however, still a matter of
debate if market data also exhibit some form of long memory. Many earlier studies,
focused on the returns themselves. Long memory in returns, or levels, as it is also
commonly referred to, would, however, be a radical departure from the random
walk hypothesis and the assumption of the unpredictability of asset returns which
underlines the classical asset pricing theory. Empirical studies also suggest that
the returns are essentially uncorrelated and the presence of a weak correlation can
be to a large extent explained by factors like bid-ask spread and non-synchronous
trading, see Campbell et al. (1997). However, the presence of strong dependence
between the squares or absolute values of returns does not contradict the efficient
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market hypothesis and many empirical studies suggest that such transformations of
returns exhibit some form of persistent dependence. The presence of long memory
in the squares of returns may have profound implications. For example, the volat-
ility estimators based on historical data can be affected, which may in turn impact
pricing of derivative products.

In order to develop estimation procedures, a parametric or semiparametric model
must be postulated in which the squares of returns form a long memory station-
ary sequence. Even though several attempts have been made to construct such
models by modifying classical ARCH or GARCH specifications, Giraitis et al.
(2000) showed that some of these models have in fact short memory, see Sec-
tion 2 for more details. Recall that in the context of covariance stationary linear
time series, long memory is typically characterized by the requirement that the
autocovariance function decays at the ratek2d−1, 0 < d < 1/2, and hence, is not
absolutely summable; a series is said to have short memory if the autocovariance
function is absolutely summable. These definitions are applicable to any station-
ary sequences, and we adopt them in this paper to the sequences of squaresr2

t ,
where thert follow an ARCH type model developed by Giraitis et al. (1999b).
The new model is different from the traditional ARCH(∞) in that the parameter
σt itself, not the conditional varianceσ 2

t , is a linear function of the past returns.
The construction implies that the autocovariance function Cov(r2

t , r
2
t+k) decays at

the ratek2d−1 for some 0< d < 1/2. We believe that it is not possible to modify
the classical ARCH(∞) specification in such a way that the autocovariances of
the r2

t decay likek2d−1, see Proposition 2.1 and Giraitis et al. (1999b) for a more
extensive discussion. The model of Giraitis et al. (2000) is described in detail in
Section 2.

The paper examines two types of estimation procedures. The first class of estim-
ators, examined from the theoretical and empirical point of view, goes back to the
pioneering work of Mandelbrot and his collaborators, see references in Section 3,
who developed therescaled range, orR/S, method of Hurst (1951) into a widely
used tool for estimating the intensity of long memory. In addition to theR/S

method, we also study estimators based on the KPSS statistic of Kwiatkowski et al.
(1992) and theV/S statistic proposed by Giraitis et al. (1999a). In the latter two
methods, the range of the partial sums appearing in theR/S statistic is replaced,
respectively, by their ‘second moment’ and ‘variance’. Details are presented in
Subsection 3.1. The above three methods are based on subdividing the sample
into a number of blocks. The choice of the blocks is important as it affects the
accuracy of the estimators. There is no theoretical guidance as to how to subdivide
the sample, so Monte Carlo simulations must be employed. The second procedure
is based on the spectral domain approximate maximum likelihood estimator de-
veloped by Robinson (1995) in the setting of linear long memory processes. We
focus only on an empirical study of this estimator. In a practical implementation
of this procedure, the choice of a bandwidth of Fourier frequencies around zero
is crucial. Even though some theoretical results are available in the linear and
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Gaussian cases, see Subsection 3.2, Monte Carlo simulations offer a more detailed
guidance. Our simulations support the conjecture that this estimation procedure,
developed originally for Gaussian and linear processes, might also be applicable
to ARCH type models. Its theoretical justification and properties in this setting are
largely an interesting open problem.

The paper is organized as follows: Section 2 introduces the model of Giraitis
et al. (1999b). In Section 3, we describe the estimators and develop the necessary
theoretical background. Section 4 contains the results of an extensive simulation
study and provides the technical details of the implementation of the estimation
procedures presented in Section 3.

2. The Model

We describe in this section the model of Giraitis et al. (1999b) and discuss its main
properties. The central feature of this model is that while the observations (returns)
rt are uncorrelated, their squares have the autocovariance function which is not
absolutely summable. This is in contrast to a classical ARCH(∞) sequence whose
squares have an absolutely summable autocovariance function. To underline the
differences between the two specifications, we begin by recalling some relevant
properties of the classical ARCH(∞) model.

A random sequence{rk, k ∈ Z} is said to satisfy ARCH(∞) equations if there
exists a sequence of independent identically distributed zero mean random vari-
ables{εk, k ∈ Z} such that

rk = σkεk, σ 2
k = a +

∞∑
j=1

bj r
2
k−j , (2.1)

wherea>0, bj > 0, j = 1,2, . . . . As mentioned in the introduction, in this paper
we focus on the sequence of squaresXk = r2

k . If the rk obey (2.1), then theXk
satisfy the equations

Xk = ε2
k

a + ∞∑
j=1

bjXk−j

 . (2.2)

Using a Volterra-type representation

Xk = a + a
∞∑
l=1

∞∑
j1,...,jl=1

bj1 . . . bjl ε
2
kε

2
k−j1 . . . ε

2
k−j1−···−jl ,

Giraitis et al. (2000) obtained a number of results which show that under mild
assumptions sequencesXk satisfying (2.2) cannot have long memory. These as-
sumptions require essentially that

∑∞
j=1 bj < ∞, a condition imposed also in

Ding and Granger (1996), Baillie et al. (1996) and related papers which aimed
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at constructing ARCH type models with long memory in squares. Kokoszka and
Leipus (2000) showed that under the assumption

(Eε4
0)

1/2
∞∑
j=1

bj < 1 (2.3)

there exists a unique weakly stationary solution to (2.2). Giraitis et al. (1999a,
2000) established the following results which show that the classical ARCH(∞)
model (2.1) has short memory in squares.

PROPOSITION 2.1.If assumption (2.3) is satisfied, then for anyk ∈ Z

06Cov(Xk,X0) <∞
and

∞∑
k=−∞

Cov(Xk,X0) <∞. (2.4)

THEOREM 2.1. SupposeEε8
0 <∞ and

(Eε8
0)

1/4
∞∑
j=1

bj < 1.

Then asN →∞

N−1/2
[Nt ]∑
j=1

(Xj − EXj) D[0,1]−−−→ σW(t), (2.5)

where{W(t), t ∈ [0,1]} is the standard Brownian motion,
D[0,1]−−−→ means weak

convergence in the spaceD[0,1] endowed with the Skorokhod topology andσ 2 =∑∞
k=−∞Cov(Xk,X0).

In a model introduced by Robinson (1991) and developed by Giraitis et al.
(1999b), which we call here LM ARCH(∞) (not to be confused with the LM-
ARCH of Ding and Granger (1996) which is of the form (2.1)), relations (2.4) and
(2.5) no longer hold; the covariances of theXk decay at the ratek2d−1 for some
0 < d < 1/2, and appropriately normalized partial sums converge to a fractional
Brownian motion. This model is defined as follows. Therk are assumed to satisfy

rk = σkεk, σk = α +
∞∑
j=1

βj rk−j , (2.6)
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where{εk, k ∈ Z} is a sequence of zero mean finite variance i.i.d. random variables,
α is a real number and the weightsβj satisfy

βj ∼ cjd−1, 0< d < 1/2, (2.7)

for somec > 0.
Note that neitherα nor theβj are assumed positive and, unlike in (2.1),σk,

not its square, is a linear combination of the pastrk , rather than their squares.
Observe also that condition (2.7) implies only

∑
j β

2
j < ∞ which contrasts with

the assumption
∑

j bj <∞.
Giraitis et al. (1999b) established the following results which show that the

squares of therk satisfying (2.6) and (2.7) have two essential features of long
memory: hyperbolically decaying non-summable covariances and attraction to a
fractional Brownian motion.

THEOREM 2.2. SupposeEε4
0 <∞ and

L(Eε4
0)

1/2
∞∑
j=1

β2
j < 1, (2.8)

whereL = 7 if the εk are Gaussian andL = 11 in other cases. Then there is a
stationary solution to Equations (2.6) and (2.7) given by orthogonal Volterra series

rk = σkεk, σk = α
∞∑
l=0

∞∑
j1,... ,jl=1

βj1 · · · βjl εk−j1 · · · εk−j1−···−jl . (2.9)

The sequenceXk = r2
k is covariance stationary and ask→∞

Cov(Xk,X0) ∼ Ck2d−1, (2.10)

whereC is a positive constant.

Recall that a Gaussian process{WH(t), t >0} is a fractional Brownian motion
with parameterH ∈ (0,1) if it has mean zero and covariances

E[WH(t1)WH (t2)] = 1
2(t

2H
1 + t2H2 − |t1− t2|2H). (2.11)

THEOREM 2.3. If conditions of Theorem 2.2 are satisfied then asN →∞
1

N1/2+d

[Nt ]∑
j=1

(Xj − EXj) D[0,1]−−−→ cdW1/2+d(t), (2.12)

wherecd is a positive constant.

We see that, in spite of the nonlinearity, the LM ARCH(∞) model satisfies, up
to a scaling constant, the same asymptotic relations (2.10) and (2.12) as the moving
averageYk =∑∞j=0 βk−j εj with the weightsβj (2.7).
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We conclude this section by noting that the smallest possible value ofL in (2.8)
is not known; this is a complex combinatorial problem. In the Gaussian case the
third order cumulants in a diagram formula used in the proof vanish, so a smaller
value ofL can be taken.

In the simulations presented in Section 4 we also use coefficientsβj for which
relation (2.8) fails to hold withL = 7, so, strictly speaking, there is no theoret-
ical justification for the results obtained in such cases. The estimation procedures,
however, continue to perform quite well, suggesting a need for further theoretical
research in this direction.

3. The Estimators

In this section, we describe the two estimation procedures for the long memory
parameterd in (2.6) and (2.7), and provide some theoretical background. Through-
out the present sectionX1, . . . , XN is an observed sample.

3.1. ESTIMATORS BASED ON THE PARTIAL SUMS

We present here a theoretical background for three procedures based on
Theorem 2.3. We begin with the rescaled range, orR/S analysis introduced by
Hurst (1951) and subsequently refined by Mandelbrot and his collaborators, see
Mandelbrot and Wallis (1969), Mandelbrot (1972, 1975) and Mandelbrot and Taqqu
(1979).

TheR/S statistic is defined aŝRN/ŝN where

R̂N = max
16 k6 N

k∑
j=1

(Xj − X̄N)− min
16 k6N

k∑
j=1

(Xj − X̄N) (3.1)

is the range and

ŝ2
N =

1

N

N∑
j=1

(Xj − X̄N)2 (3.2)

is a standard variance estimator. In (3.1) and (3.2),X̄N is the sample mean
N−1∑N

j=1Xj . The identity

k∑
j=1

(Xj − X̄N) =
k∑
j=1

(Xj − EXj)− k

N

N∑
j=1

(Xj − EXj)

and Theorem 2.3 imply that

R̂N

N1/2+d
d→ cd

{
max

06 t 6 1
W 0

1/2+d(t)− min
06 t6 1

W 0
1/2+d(t)

}
, (3.3)
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where

W 0
1/2+d(t) = W1/2+d(t)− tW1/2+d(1)

is a fractional Brownian bridge, cf. (2.11). It is equally easy to verify that

ŝ2
N

P→ VarX1. (3.4)

Indeed,

ŝ2
N =

1

N

N∑
j=1

(X2
j − EX2

j )+ (EX2
1 − [X̄N ]2). (3.5)

By the Volterra representation (2.9)X2
j can be written asX2

j = f (εj , εj−1, . . . )

wheref is a measurable function. Since{εj } is an ergodic sequence this implies
(cf. Theorem 3.5.8 of Stout, 1974) ergodicity of{X2

j }. Under assumptions of The-
orem 2.3EX2

j < ∞. Therefore the first term in (3.5) tends to zero. By the same
argument as above{Xj } is ergodic as well, and thereforēXN ⇒ EX1. Hence the
second term in (3.5) tends to VarX1.

Combining (3.3) and (3.4), we see that asN →∞
1

N1/2+d
R̂N

ŝN

d→ cd{max06 t 6 1W
0
1/2+d(t)−min06 t6 1W

0
1/2+d(t)}

(VarX1)1/2
=: Rd.

(3.6)

Relation (3.6) forms a theoretical foundation for theR/Smethod. Taking logari-
thms of both sides, we obtain a heuristic identity

log

(
R̂N

ŝN

)
≈
(

1

2
+ d

)
logN + logRd, as n→∞,

which can also be written as

d̂R/S − d = OP

(
1

logN

)
with d̂R/S = log(R̂N/ŝN)

logN
− 1

2
,

and which shows that 1/2+d can be interpreted as the slope of a regression line of
log(R̂N/ŝN) on logN with random intercept logRd . The point of theR/S analysis
is to consider many subsamples of varying sizeN from a given sampleX1, . . . , XN
in order to obtain many points which are used to estimate the slope of the regression
line, see for example Mandelbrot and Taqqu (1979) or Beran (1994). The technical
details of the implementation of this procedure are described in Section 4.

The above discussion shows that in place of the range (3.1), any other ‘simple’
continuous functional of the partial sum process can form a basis for an estim-
ation procedure of the type just described. We focus below on the KPSS and
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V/S statistics, used by Giraitis et al. (1999a) to test for long memory in ARCH
models, which provide the other two estmators ofd.

The KPSS statistic was introduced by Kwiatkowski et al. (1992) to test trend
stationarity against a unit root alternative. Lee and Schmidt (1996) used the KPSS
statistic to test for the presence of long memory in a stationary linear time series
and gave its asymptotic distribution under long memory alternatives, but provided
only heuristic outlines of the proofs.

In the context of testing for long memory in a stationary sequence the KPSS
statistic takes the form:

T̂N = M̂N

Nŝ2
N

(3.7)

with ŝ2
N given by (3.2) and

M̂N = 1

N

N∑
k=1

 k∑
j=1

(Xj − X̄N)
2

.

We thus see that the range has been replaced by the second moment. We retained
theN in the denominator of the RHS if (3.7) in order to conform to the original
definition of Lee and Schmidt (1996); unlike theR/S statistic which must be di-
vided by

√
N in order to ensure convergence for weakly dependentXj , the statistic

T̂N converges in this case without any normalization.
By Theorem 2.3,

M̂N

N1+2d

d→ c2
d

∫ 1

0
[W 0

1/2+d(t)]
2 dt. (3.8)

Hence settinĝdKPSS= log T̂N/(2 logN) we get

d̂KPSS− d = OP

(
1

logN

)
.

Combining relation (3.8) with (3.4), we see that the slope of the regression line of
log T̂N on logN estimates 2d, whereas the regression of log(M̂1/2

N /ŝN) on logN
yields an estimate ofd + 1/2.

In the context of long memory hypothesis testing, Giraitiset al. (1999a) pro-
posed the statistic

ÛN = V̂N

ŝ2
NN

, (3.9)

where

V̂N = 1

N


N∑
k=1

 k∑
j=1

(Xj − X̄N)
2

− 1

N

 N∑
k=1

k∑
j=1

(Xj − X̄N)
2
 .
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They calledÛN theV/S statistic for ‘variance overS’. This statistic is very similar
to the KPSS statistic, the second sample momentM̂N in (3.7) is replaced by the
sample varianceV̂N . The statisticÛN contains a correction for a mean and is
more sensitive to ‘shifts in variance’ than̂TN , see Giraitis et al. (1999a) for further
background and discussion.

Arguing as above, we conclude that the regressions of logÛN and log(V̂ 1/2
N /ŝN)

on logN will, respectively, yield estimates of 2d and d + 1/2 (settingd̂V /S =
log ÛN/(2 logN) we getd̂V /S − d = OP(1/ logN)).

3.2. SPECTRAL DOMAIN ESTIMATION

We describe here the local Whittle estimator proposed by K¨unsch (1987) and de-
veloped by Robinson (1995) which is used to estimate the parametersC > 0 and
0 < d < 1/2 assuming that the observed Gaussian or moving average series has
spectral densityf (λ) which behaves at low frequencies like

f (λ) ∼ C|λ|−2d, λ→ 0. (3.10)

The estimator minimizes an approximate Gaussian maximum likelihood function:

1

m

m∑
j=1

{
ln(Cλ−2d

j )+ I (λj )

Cλ−2d
j

}
,

where

I (λj ) = 1

2πN

∣∣∣∣∣
N∑
k=1

Xke
ikλj

∣∣∣∣∣
2

is the periodogram at the Fourier frequenciesλj = 2πj/N, j = 1, . . . , m. The
bandwidthm increases more slowly than the sample sizeN :

1

m
+ m
N
→ 0 asN →∞.

Robinson (1995) showed that under appropriate conditions, which include the ex-
istence of a linear moving average representation, the estimator ofd is asymptot-
ically normal and converges at the rate

√
m:

√
m(d̂ − d) ∼ N (0, 1

4),

where the upper bound form depends on the degree of the smoothness of spectral
densityf (λ) whenλ→ 0.

In the case of long-memory LM ARCH(∞) sequences discussed in Theorem
2.2, no similar asymptotic theory is available at present. However, note that relation
(2.10) implies that the spectral densityf of the sequenceXk = r2

k satisfies (3.10).
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Thus, although the local Whittle estimator was designed for Gaussian or moving
average time series, we expect that it is applicable also to the LM ARCH(∞) series
with the Volterra representation (2.9). This is because the weightsβ1, β2, . . . can be
conveniently factorized and are square summable. We expect that, similarly as for
moving averages, these properties effectively control the dependence structure of
theXk and allow to derive not only the CLT, Theorem 2.2, but also the asymptotic
distribution of the local Whittle estimator. The empirical results show that this is at
least a consistent estimator ofd.

In the Gaussian case, the problem of the choice of the bandwidthm is related
to the smoothness of the short memory componenth(λ) appearing in the following
factorization of the spectral density:

f (λ) = |1− exp(iλ)|−2dh(λ).

Assuming thath is twice differentiable andh(0) > 0, Delgado and Robinson
(1996) proved that in case of the modified Geweke Porter-Hudak estimator the
optimalm is given by

moptimal= coptimalN
4/5, (3.11)

where

coptimal=
(

3

4π

)4/5(
h′′(0)
2h(0)

+ 1

12
d

)−2/5

. (3.12)

The use of (3.11) and (3.12) in the case of the local Whittle estimator is not the-
oretically justified and not fully convincing even for Gaussian sequences, let alone
for the LM ARCH(∞) model. Nevertheless, we use these formulas in our setting
and evaluate the optimal bandwidth from the data by using an iterative procedure
proposed by Robinson and Henry (1996). We evaluate the quality of an estimator
constructed in this way by comparing it with theR/S type estimators described in
Subsection 3.1.

4. Simulations

We consider the following data generating process (DGP):

rk = σkεk, σk = α +
∞∑
j=1

βj rk−j , k = 1, . . . , N, εk ∼ N(0,1). (4.13)

Two sample sizes are considered,N = 3000, 6000. To reduce initialization effects,
which are particullarly strong for long–range dependent sequences, we generate for
each simulation a seriesr−τ , r−τ+1, . . . , r−1, r0, r1, . . . , rN , τ = 12 000, where the
pre-sample observationsr−τ , r−τ+1, . . . , r−1, r0 are recursively used for initializ-
ing the process, and are discarded afterwards. We truncate the infinite order lag
polynomialβ(L) at the order 5000 to take into account the dependence between
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Table I. Estimation results for the LM ARCH(∞) process, Model A (root mean squared error in
parentheses)

d 3000 observations 6000 observations

V/S R/S KPSS Robinson V/S R/S KPSS Robinson

0.05 0.0092 0.0495 0.0114 0.0285 0.0122 0.0479 0.0137 0.0294

(0.0622) (0.0362) (0.0662) (0.0362) (0.0527) (0.0284) (0.0557) (0.0307)

0.075 0.0321 0.0677 0.0363 0.0553 0.0371 0.0682 0.0406 0.0560

(0.0645) (0.0378) (0.0674) (0.0378) (0.0536) (0.0301) (0.0556) (0.0324)

0.1 0.0800 0.1102 0.0835 0.0834 0.0826 0.1093 0.0848 0.0852

(0.0528) (0.0391) (0.0585) (0.0396) (0.0425) (0.0317) (0.0470) (0.0326)

0.125 0.0949 0.1190 0.1033 0.1125 0.1035 0.1235 0.1103 0.1145

(0.0591) (0.0398) (0.0620) (0.0413) (0.0460) (0.0319) (0.0487) (0.0331)

0.15 0.1284 0.1470 0.1383 0.1395 0.1375 0.1527 0.1454 0.1432

(0.0562) (0.0406) (0.0604) (0.0437) (0.0438) (0.0333) (0.0480) (0.0345)

0.175 0.1599 0.1738 0.1708 0.1656 0.1689 0.1801 0.1775 0.1708

(0.0550) (0.0415) (0.0606) (0.0471) (0.0429) (0.0343) (0.0485) (0.0370)

0.2 0.1776 0.1887 0.1894 0.1701 0.1872 0.1959 0.1965 0.1811

(0.0578) (0.0434) (0.0619) (0.0579) (0.0448) (0.0347) (0.0490) (0.0439)

0.225 0.1668 0.1786 0.1801 0.1778 0.1787 0.1874 0.1898 0.1902

(0.0790) (0.0625) (0.0761) (0.0688) (0.0632) (0.0510) (0.0604) (0.0531)

very distant observations. The sequence of innovationsεk is generated by using
two different random number generators, with different seeds. We randomly draw
one of the two generated uniform deviates, and transform it to a Gaussian random
variable by using the Box-Muller method.

We generate 5000 independent samples. Each sample ofN observation is sub-
divided intoB adjacent and non-overlapping blocks of observations of equal size
[N/B]. We then obtain a gridt1 = 1, t2 = [N/B] + 1, . . . , ti = (i − 1)[N/B]
+ 1, . . . , tB = N − [N/B] + 1. For each point of the sequence{ti}Bi=1 we define
a sequence ofK increasing nested blocks with originti , i.e., {[ti, ti + kj ]}Kj=1,
such thatti + kj 6N , the sequence ofK steps{kj }Kj=1 is given by a logarithmic
grid. Interested readers are referred to Beran (1994), p. 84–85, for more details on
the ‘pox-plot’ based estimators. Beran (1994) reports the fact that the ‘pox-plot’
based estimates of the Hurst exponent of the Nile river data strongly depend on
the choice ofK, and that “it seems difficult to define an ‘automatic’ ‘pox-plot’
methodology, and to derive results on statistical inference based on the method”.
In our simulations, the minimum value ofK is set to 40 and the number of blocks
B is set to 40. This choice is motivated by the simulation results.

We calculate theR/S, V/S and KPSS statistics for each interval{{[ti, ti +
kj ]}Bi=1}Kj=1 and obtain the sequences{{R/S(ti, kj )}Bi=1}Kj=1, {{V/S(ti, kj )}Bi=1}Kj=1,
and{{KPSS(ti , kj )}Bi=1}Kj=1. We plot the logarithm of the statistics log(R/S(ti, kj )),
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Table II. Estimation results for the LM ARCH(∞) process, Model B (root mean squared error in
parentheses)

d 3000 observations 6000 observations

V/S R/S KPSS Robinson V/S R/S KPSS Robinson

0.05 0.0048 0.0434 0.0069 0.0138 0.0075 0.0414 0.0085 0.0153

(0.0643) (0.0358) (0.0678) (0.0470) (0.0556) (0.0290) (0.0584) (0.0417)

0.075 0.0041 0.0453 0.0066 0.0069 0.0085 0.0449 0.0105 0.0078

(0.0846) (0.0462) (0.0865) (0.0742) (0.0756) (0.0410) (0.0767) (0.0708)

0.1 0.0227 0.0597 0.0276 0.0213 0.0297 0.0615 0.0342 0.0244

(0.0907) (0.0543) (0.0907) (0.0845) (0.0797) (0.0482) (0.0788) (0.0794)

0.125 0.0502 0.0815 0.0582 0.0446 0.0603 0.0861 0.0675 0.0516

(0.0894) (0.0576) (0.0875) (0.0877) (0.0756) (0.0493) (0.0731) (0.0788)

0.15 0.0841 0.1088 0.0949 0.0764 0.0963 0.1158 0.1059 0.0873

(0.0833) (0.0569) (0.0804) (0.0837) (0.0673) (0.0467) (0.0644) (0.0705)

0.175 0.1208 0.1390 0.1338 0.1133 0.1342 0.1478 0.1454 0.1268

(0.0755) (0.0543) (0.0731) (0.0755) (0.0585) (0.0429) (0.0566) (0.0593)

0.2 0.1573 0.1697 0.1718 0.1512 0.1709 0.1796 0.1831 0.1662

(0.0686) (0.0517) (0.0680) (0.0673) (0.0518) (0.0398) (0.0520) (0.0501)

0.225 0.1914 0.1989 0.2067 0.1875 0.2046 0.2093 0.2171 0.2032

(0.0639) (0.0501) (0.0653) (0.0620) (0.0480) (0.0383) (0.0503) (0.0450)

0.25 0.2215 0.2251 0.2370 0.2204 0.2340 0.2357 0.2464 0.2364

(0.0615) (0.0498) (0.0642) (0.0607) (0.0465) (0.0381) (0.0501) (0.0444)

0.275 0.2468 0.2474 0.2622 0.2490 0.2584 0.2579 0.2703 0.2647

(0.0612) (0.0512) (0.0640) (0.0629) (0.0465) (0.0393) (0.0500) (0.0472)

0.3 0.2676 0.2661 0.2828 0.2728 0.2766 0.2750 0.2876 0.2892

(0.0624) (0.0544) (0.0641) (0.0663) (0.0491) (0.0434) (0.0510) (0.0533)

0.325 0.2831 0.2799 0.2985 0.2909 0.2887 0.2864 0.2988 0.3048

(0.0659) (0.0609) (0.0648) (0.0731) (0.0576) (0.0533) (0.0575) (0.0611)

0.35 0.2918 0.2880 0.3057 0.3038 0.2968 0.2943 0.3061 0.3176

(0.0774) (0.0744) (0.0742) (0.0843) (0.0687) (0.0664) (0.0664) (0.0736)

0.375 0.2963 0.2922 0.3095 0.3115 0.2998 0.2976 0.3083 0.3238

(0.0932) (0.0923) (0.0879) (0.0992) (0.0865) (0.0853) (0.0827) (0.0896)

log(V /S(ti, kj )), log(KPSS(ti , kj )), against log(kj ) and then obtain a ‘pox-plot’.
Let b̂ be the slope of the least-squares regression line fitted to these pox-plots. Then
d̂R/S = b̂ − 1/2, d̂V /S = b̂/2, andd̂KPSS= b̂/2.

We consider three DGP-s which differ by the parameterization of the infinite
order lag polynomialβ(L): we have chosen three parameterizations of the moving
average form of a FARIMA process. For all models, the parameterα, which is the
initial value of the process, is set to 0.10.
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Table III. Estimation results for the LM ARCH(∞) process, Model C (root mean squared error in
parentheses)

d 3000 observations 6000 observations

V/S R/S KPSS Robinson V/S R/S KPSS Robinson

0.05 −0.0064 0.0374 −0.0058 −0.0023 −0.0053 0.0344 −0.0053 −0.0023

(0.0723) (0.0370) (0.0760) (0.0600) (0.0656) (0.0316) (0.0686) (0.0568)

0.075 −0.0001 0.0421 0.0020 0.0028 0.0033 0.0408 0.0049 0.0035

(0.0879) (0.0482) (0.0900) (0.0779) (0.0802) (0.0441) (0.0814) (0.0748)

0.1 0.0160 0.0544 0.0205 0.0151 0.0226 0.0558 0.0269 0.0176

(0.0963) (0.0581) (0.0962) (0.0901) (0.0858) (0.0527) (0.0848) (0.0857)

0.125 0.0417 0.0745 0.0494 0.0359 0.0517 0.0789 0.0589 0.0425

(0.0965) (0.0628) (0.0942) (0.0952) (0.0828) (0.0550) (0.0798) (0.0870)

0.15 0.0748 0.1009 0.0856 0.0662 0.0874 0.1081 0.0972 0.0772

(0.0906) (0.0626) (0.0869) (0.0923) (0.0744) (0.0524) (0.0704) (0.0794)

0.175 0.1117 0.1311 0.1251 0.1032 0.1259 0.1403 0.1376 0.1174

(0.0820) (0.0596) (0.0783) (0.0836) (0.0644) (0.0478) (0.0609) (0.0669)

0.2 0.1494 0.1625 0.1644 0.1424 0.1640 0.1730 0.1768 0.1583

(0.0737) (0.0561) (0.0714) (0.0734) (0.0559) (0.0435) (0.0543) (0.0554)

0.225 0.1851 0.1930 0.2011 0.1803 0.1994 0.2041 0.2127 0.1974

(0.0675) (0.0534) (0.0673) (0.0658) (0.0505) (0.0407) (0.0513) (0.0474)

0.25 0.2172 0.2209 0.2336 0.2153 0.2307 0.2322 0.2439 0.2328

(0.0638) (0.0521) (0.0654) (0.0621) (0.0478) (0.0397) (0.0505) (0.0446)

0.275 0.2448 0.2455 0.2611 0.2470 0.2570 0.2562 0.2696 0.2636

(0.0619) (0.0521) (0.0642) (0.0619) (0.0473) (0.0403) (0.0504) (0.0461)

0.30 0.2679 0.2660 0.2840 0.2724 0.2763 0.2743 0.2879 0.2893

(0.0628) (0.0549) (0.0645) (0.0643) (0.0510) (0.0450) (0.0526) (0.0517)

0.325 0.2839 0.2806 0.2993 0.2937 0.2918 0.2888 0.3025 0.3092

(0.0673) (0.0615) (0.0672) (0.0720) (0.0555) (0.0514) (0.0554) (0.0584)

0.35 0.2961 0.2916 0.3108 0.3083 0.3018 0.2985 0.3118 0.3236

(0.0746) (0.0717) (0.0720) (0.0801) (0.0650) (0.0629) (0.0629) (0.0683)

0.375 0.3024 0.2975 0.3164 0.3181 0.3066 0.3035 0.3158 0.3320

(0.0883) (0.0876) (0.0834) (0.0933) (0.0806) (0.0799) (0.0769) (0.0823)

− Model A. The coefficientsβj are those of the moving average representation
of a FARIMA(0,d, 0) process, that is, the coefficients of the fractional differ-
ence operator(1− L)−d . Thus,βj = bj , with thebj defined recursively by
b0 = 1, b1 = d, bj = bj−1(j − 1+ d)/j, j > 1.

− Model B. The coefficients of this DGP are those of the MA representation of
a FARIMA(1, d, 0) process with AR polynomial equal to 1− φL, that is, of
the filter(1−φL)−1(1−L)−d . Thus,β1 = b1+φ, βj =∑j

k=0 φ
kbj−k j > 1.
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− Model C. The coefficients of this DGP are those of the MA representation
of a FARIMA(0, d,1) process, the MA polynomial being equal to 1− θL.
Thus, the long memory filter is equal to(1− θL)(1−L)−d andβ1 = b1− θ ,
βj = bj − θbj−1 j > 1.

For the Model A, condition (2.8) is satisfied ifd < 0.1865. If this condition
is not satisfied, there is a large systematic bias for the ‘pox-plot’ based estimators.
For that reason, we do not report the estimates ford > 0.225. Condition (2.8) can
be satisfied by multiplying all theβj by a constant< 1. However, Monte Carlo
simulation results show that this rescaling leads to a systematic negative bias, that
is, the parameterd is underestimated.

For Models B and C, we chooseθ = 0.20 andφ = −0.20. These values
ensure that condition (2.8) is satisfied ford > 0.1865. The coefficientsβj depend
on d, but also on the parametersθ andφ. If the first elements of the sequence
of theβj are small, there is a systematic negative bias, that is, the parameterd is
underestimated. This negative bias is quite large for small values ofd, and becomes
smaller whend ∈ (0.20,0.375), and increases ford > 0.375.? It is well-known, see
e.g. Mandelbrot and Taqqu (1979), that for linear long-memory time series theR/S

estimator overestimatesd for smalld and underestimates it ford close to 0.5, that
is, has a bias toward the central values in the range(0,0.5). It is an interesting
finding of our experiments that for the LM ARCH(∞) model, there appears to be
a systematic negative bias.

For all the models, it appears that the root mean squared error (RMSE) of the
R/S estimator is slightly smaller than the RMSE of the other estimators. The fact
that the rate of convergence of the local Whittle estimator is slow and similar to
the rate of the other estimators can be a consequence of the choice of the Robinson
and Henry (1996) optimal bandwidth which has been developed in the framework
of Gaussian long-memory models, with some additional assumptions on the func-
tional form and the smoothness of the spectrum in the neighborhood of the zero
frequency. Given that these restrictions might be too strong, some authors, for
example, Lobato and Savin (1998), use the local Whittle estimator on a grid of
bandwidths.

5. Conclusions

We have considered in this paper several methods for estimating the degree of
long-memory in the conditional heteroskedastic model of Giraitis et al. (1999b).
Three of these estimators are similar to the ‘pox-plot’R/S estimator, the fourth
one is a spectral domain estimator developed originally for Gaussian time series.
Our Monte Carlo simulation results show that these estimators have similar biases
and MSE’s which are comparable to those that theR/S method gives for linear
time series. Our overall conclusion is that these four estimators, similarly as the

? The whole set of results ford ∈ [0.05, 0.5] is available upon request from Gilles Teyssi`ere.
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R/S analysis for linear time series, can be used as exploratory tools until better
estimation procedures become available. Interestingly, unlike for linear models,
for the LM ARCH(∞) the bias is always downwards. Another somewhat suprising
observation is that in terms of the mean squared error theR/S estimator performs
slightly better than the local Whittle estimator; in the Gaussian case the latter has a
much better rate of convergence than theR/S estimator, see Robinson (1995) and
Giraitis et al. (1999c) among others. This may be due to the lack of an appropriate
bandwith selection procedure for the local Whittle estimator, as discussed towards
the end of Subsection 3.2.

The empirical study presented in this paper leaves open many interesting theor-
etical and practical questions, and we hope that it will stimulate further research.
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