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Lecture 7: Rescale Range Analysis and the Hurst Exponent

Hurst exponent is one of the most frequently used statistics to describe
the the weakly stationary stochastic process which has long memory. In this
lecture, the classical rescaled range statistic of Hurst is computed for seven
Asia-Pacific countries’ stock indices. It is confirmed that all index return
have long memory.

Introduction

• A weakly stationary process has short memory when its autocorrela-
tion function (ACF) ρ(.) is geometrically bounded, i.e., there exists a
constant C such that

| ρ(h) |≤ Cγ|h| (1)

where 0 < γ < 1.

• The stationary stochastic processes frequently referred in financial time
series, such as ARCH (Engle, 1982), GARCH (Bollerslev, 1986), IGARCH
(Engle and Bollerslev, 1986), and EGARCH (Nelson, 1991) all have
short memory for volatilities.

• A weakly stationary process have long memory if its ACF has a hyper-
bolic decay,

ρ(h) ∼ Ch2d−1 as h →∞, (2)

where C 6= 0 and d < 0.5. The stationary stochastic processes such as
LMSV (Bredit, Crato and de Lima, 1994), FIGARCH (Baillie, Boller-
slev and Mikkelsen, 1996), FIEAGRCH (Nelson, 1991; Bollerslev and
Mikkelsen, 1996) are long-memory models for volatilitis.

1



• One of the most interesting findings in financial econometrics is that
many financial time series has long memory. For example, Bollerslev
and Mikkelsen (1996) found slowly decaying autocorrelations for the
absolute returns | rt | of the Standard & Poor’s 500 index. Also, Baillie,
Bollerslev and Mikkelsen (1996) found persistence in the volatility of
nominal exchange rates.

• Persistence in autocorrelations was first found in hydrological data by
Hurst (1951). This phenomenon in river flow time series was named
Hurst effect. It is cited in Mandelbrot and Wallis (1969) as the Joseph
effect.

• In the biblical story, Joseph interpreted Pharaoh’s dream to mean seven
years of plenty followed by seven years of famine.

• Mandelbrot and Wallis (1969) suggested to model such time series with
fractional Gaussian noise process. It can be shown that the Hurst
exponent (breifly H), as defined in the next section, is exactly the
fundamental parameter of the fractional Gaussian noise process. An
H of 0.5 implies a non-detrministic process, i.e., one in which the past
history does not influence the future course of the series. An H of less
than 0.5 implies anti-persistent behaviour. An H of greater than 0.5
implies a persistent behavior.

Rescaled Range Analysis: The Algorithm Peters (1994) provides
the basic procedure for calculating Hurst exponents. The following algroithm
is adapted from Hampton (1996a).

1. For a given financial time series of interest, say the Taiwan Stock Ex-
change Index Pt, select T samples of the series, where T is greater than
the longest cycle of interest.

2. From the T samples of data, construct T−1 variables of the logarithmic
returns of sequential data points as follows

rt = ln
Pt+1

Pt (3)
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3. Begining with the smallest value of n, partition the data into Tn se-
quential non-overlapping blocks, where Tn = T−1

n . If Tn is not interger,
then it is redefined as [T−1

n ], where [ ] is the Gauss symbol.

4. Compute the local mean rate of return for each block of data.

r̄[i:Tn] =
∑in

t=(i−1)n+1 rt

n
, i = 1, 2, ...Tn (4)

5. Compute the local standard deviation (local volatility), S[i:Tn]

S[i:Tn] =

√

∑in
t=(i−1)n+1(rt − r̄[i:Tn])2

n
(5)

6. Compute the accumulated differences between each rt and the corre-
sponding r̄[i:Tn] for each block.

Dj,i =
(i−1)n+j

∑

t=(i−1)n+1

(rt − r̄[i:Tn]), i = 1, 2, ...Tn, j = 1, 2, ..., n (6)

7. Substract the minimum from the maximum of the accumulated differ-
ence for each block, providing the local range, R[i:Tn]

R[i:Tn] = max(Dj,i)−min(Dj,i), i = 1, 2, ...Tn, j = 1, 2, ..., n (7)

8. Divide each local R[i:Tn] by each corresponding local S[i:Tn], producing

(
R
S

)[i:Tn] =
R[i:Tn]

S[i:Tn]
(8)

This value is referred to as the rescaled range.

9. Compute the average of R
S [i:Tn],

(
R
S

)Tn =
∑Tn

i=1(
R
S )[i:Tn]

Tn
(9)

10. Repeat steps 3 through 9 using the next large value of n until n = N
2 .
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11. Plot the ln(R
S )Tn versus the lnn for each n.

12. Generate a linear regression through the plot.

ln(R
S )Tn = K + H lnn (10)

13. Compute the slope of the regression line, provdiding the estimated
Hurst exponent for a range of n, denoted by Hn.

14. Hurst exponents for individual values of n can be estimated by

Hn =
ln(R

S )Tn

lnn (11)

15. The program to implement the rescaled range analysis can be down-
loded from here.

Data Description

• The data employed in this paper is summarzied in Table 1. The R/S
analysis is applied to seven Asia-Pacific stock markets. Except the
U.S., all data used are daily indices. For U.S., the monthly data is
used.

• The reason of using data with different frequencies is mainly motivated
by a series studies which indicate that information contained in the
data tends to disappear when high-frequency data is replaced by the
low-frequency data.

• If this is ture, then the Hurst exponet of the high-frequency data is
expected to be higher than that of the low one.1

1More precisely, consider the Hurst exponent HTn as the function of the frequency (ω)
of the observation. Then the observation above is simply

lim
ω→0

HTn(ω) =
1
2

.
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Table 1: The Stock Index of Seven Asia-Pacific Countries

Country Index Period T
Taiwan TAIEX (daily) 1/1/71 - 7/1/94 6820
Taiwan TAIEX (monthly) 1/1/71 - 7/1/94 227
U.S. S&P 500 1/71 - 12/93 275

Australia All Ordinary Share 1/2/80 - 3/36/97 4320
Malaysia KLSE 5/1/92 - 3/26/97 1211
Indonesia Aktienkursindex 11/1/90- 3/26/97 1620
Thailand Bangkok SET 6/16/76 -3/26/97 5326
Philippine Manila Comp. Share 1/2/86 - 3/26/96 2873

Data Source: AREMOS DATABASE

Empirical Results (I)

• While the Hurst exponent can be obtained from Equation (10), Peters
(1996) also cautions researchers against running the OLS regression for
the entire range of n.

• Some systems may have short natural memory cycles, as a consequence,
their R

S estimates would display a persistence only for the short subpe-
riods. Thus, one must first observe the ln( R

S )Tn by lnn plots and then
obtain an H estimate only for the lineaer portion of the plot.

• In this lecture, we adopt the above-mentionded technique.

• Another caution made by Ambrose, Ancel and Griffiths (1993) is that
regression analysis, which weights equally the few samples at relatively
long time scales and those of much shorter time scales, biases the results
in favor of finding short-term behaiour in the time series.

• The OLS regression (10) is run with respect to different ns, namely,
n = 150, 300, 450, ... up to approximately one half of the total number
of observations.

• The Matlab program to compute the Hurst exponent is availabe upon
request.

• The Hurst exponent estimated under different ns is then plotted with
the associated n in Figures 1-5.
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Table 2: The Hurst Exponent of Five Asia-Pacific Stock Markets

Country Husrt Exponent Cycle (Trading Days)
Australia 0.7000 (0.6833) 1350
Malaysia 0.7468 300
Indonesia 0.7940 750
Thailand 0.6494 2250
Philippine 0.6725 1200

Inside the bracket are the corresponding Hurst exponents estimated by Pandey,
Kohers and Kohers (1995). The sample used in this that research consists of the
weekly national stock indices retrived from Morgan Stanley Capital International
Perspective of Geneva, Switzerland from Feb. 23, 1978 through July 1, 1994.

• By choosing the highest point of these plots, the Hurst Exponet for
Australia, Phillipine, Indonesia, Malaysia and Thailand is given in Ta-
ble 2.

Some Comments:

• Of course, a prudent decision cannot be made until we can show that
these values are statistically significantly different from 0.5.

• However, there is no finite-sample distribution theory of the classical
R/S statistic. As Ravenna (1996) put, “Being so difficult to estimate
the total bias, it is not possible to conceive a rigorous test for Hurst
coefficients’ significance.” (ibid, p. 15).

• Peters (1994) provides some empircial distributions about the Hurst
exponent based on Monte Carlo experiments. See Peters (1994), pp.71-
74.

• In practice, “heursitics are sometimes developed where estimates of
Hurst exponets which fall within an empirically-derived range, say
[0.45, 055], are interpreted as representative of a random walk process
(Hampton, 1996, p25)”.
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Table 3: The Hurst Exponent of Taiwan Stock Market

Frequency Husrt Exponent Cycle
Daily 0.6337 4.5 yrs

Monthly 0.6371 5 yrs
(Monthly Closing Price)

Monthly 0.6678 4 yrs
(Simple Avergae)

Empirical Results (II)

• In the second experiment, we apply the R/S analysis to the Taiwan
stock index with different frequencies, namely, the daily data and monthly
data.

• Basically, we would like to see the robustness of the Hurst exponents
estimated under different frequencies of the data.

• In this experiment, we consider two types of monthly data. The first
type is simply the closing price of the month, and the second is the
simple average of the daily index. The Hurst exponents estimated are
also given in Table 3 and are plotted in Figures 6-8.

• From Table 3, we can see that the resultant Hurst exponents estimated
under different frequencies and different transformation of data are not
the same.

• Moreover, an inspection of Figure 7 and Figure 8 reveals that the Hurst
exponent cannot be uniquely determined.

• For example, in Figure 7, the estimated Hurst exponent can be 0.6434,
0.6405 or 0.6371. While these three estimates are not dramtically dif-
ferent, the resultant estimation of the length of cycles can range from 2
years to 5 years. Among them, the one with 5-year cycle is closed to the
result from daily data, i.e., 4.5 years. If we choose this one, the Hurst
exponent is 0.6371. Following the same criterion, the Hurst exponent
of the simple average of one-month daily index return is 0.6678 with a
4-year cycle.
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Empirical Results (III)

• In the last experiment, the R/S analysis is applied to the S&P 500.

• S&P 500 has been extensively studied by many researchers. For exam-
ple, using monthly returns from Jan. 1950 to July 1988, Peters (1992)
finds that the Hurst exponent for S&P 500 is 0.78. However, it is esti-
mated to be 0.5849 in Pandey, Kohers and Kohers (1992) who use the
weekly data.

• In this paper, we use monthly returns, while with a different sample
period, and come up with the estimate 0.687 (See Figire 9).

• Hampton (1996b) summarizes the results of various methods for inter-
preting Hurst exponents. He finds that the results are not consistent
in their characterization of the S&P 500. He concludes that the work
by Peters (1994) is not confirmed regarding daily returns for the S&P
500 over the value of n studied in this work.

Concluding Remarks:

• The R/S analysis of seven Asia Pacific stock markets show that stock
return display long memory. However, this analysis also indicates the
robustness of the estimated Hurst exponent.

• First, we find that the estimated Hurst exponent may be sensistive to
the frequencies of the data employed, daily, weekly, monthly,...etc.

• Second, the estimated Hurst exponent is not invariant to different sam-
ple period. Nevertheless, if we do not restrict our attention to the Hurst
coefficient only, then the qualitative result of long memory is valid for
all cases.

• Long memory may have important implications for the construction
of trading systems. Hampton (1996c) illustarted the use of the Hurst
exponent for trading. In his particular example, he use the 10-day
average of the estimated Hurst exponent as a technical index. If this
index is higher than 0.66, then it is time to buy. If this index is lower
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than 0.43, then it is time to sell. One of future direction for research is
how to make the use of the property of long memory to design trading
strategies.
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