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Abstract 

We test for long-term dependence in US stock returns, analyzing composite and sectoral stock indices and lirms' 
returns series to evaluate aggregation effects. Fractal dynamics are not detected in stock indices but are present in 
some firms' returns series. 

Keywords: Fractal dynamics; Long memory; Spectral regression; Stock returns 

,IEL classification: C 14; G 12 

| .  Introduction 

Long memory, or long-term dependence, describes the correlation structure of a series at 
long lags. If a series exhibits long memory (or the "biased random walk"), there is persistent 
temporal dependence even between distant observations. Such series are characterized by 
distinct but non-periodic cyclical patterns. Mandelbrot (1977) characterizes long memory 
processes as having "fractal dimenolons . The presence of long-memory dynamics in asset 
prices would provide evidence against the weak form of market efficiency as it implies 
non-linear dependence in the first moment of the distribution and hence a potentially 
predictable component in the series dynamics. It would also raise issues regarding linear 
modeling, forecasting, statistical testing of pricing models based on standard statistical 
methods, and theoretical and econometric modeling of asset pricing. 

The most widely used tests for fractal dynamics are the rescaled-range (R/S) analysis 
introduced by Hurst (1951) and later refined by Mandelbrot (1972, 1975) and Mandelbrot and 
Wallis (1969), the modified R/S analysis introduced by Lo (1991), and the spectral regression 
method suggested by Geweke and Porter-Hudak (1983). Long-memory analysis has been 
conducted for stock returns series (Greene and Fielitz, 1977; Aydogan and Booth, 1988; Lo, 
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1991; Cheung et al., 1993; Cheung and Lai, 1995; Chow et al., 1995) with most evidence 
suggesting the absence of fractal structure in stock returns. All these studies have used returns 
series on stock indices, whose construction entails a great deal of aggregation. If fractal 
structure does exist in individual stock returns series, its presence may be masked in 
aggregated returns series. This letter considers that possibility by employing the spectral 
regression method to test for long memory in a variety of aggregate and sectoral stock indices 
and stock returns series for individual companies. 

The plan of this paper is as follows. Section 2 presents the technical details of the fractional 
integration test. Empirical results are discussed in Section 3. Finally, in Section 4 we 
summarize our results. 

2. The spectral regression test for long memory 

A flexible and parsimonious way to model both the short-term and the long-term behavior 
of a time series is by means of an autoregressive fractionally integrated moving-average 
(ARFIMA) model. A time series y = {y t , . . . ,  yr} with mean 6 follows an ARFIMA process 
of order (p, d, q), denoted by ARFIMA(p,  d, q), if 

• (L)(1  - L ) a ( y , _  8 ) = O ( L ) e , ,  e., .--. IID(O, o'~), (1) 

where L is the backward-shift operator, @ ( L ) =  1 - c k t L - . . . - c ~ t , L ~ ' ,  O ( L ) =  1 + O~L + 
. . .  + OIL q and (1 - L)': is the fractional differencing operator defined by 

F(k m d ) L  ~ 
(1 - L )  '~ - r( d)r(k + l ) '  (2) 

with F(.) denoting the gamma, or generalized factorial, function. The arbitrary restriction of d 
to integer values gives rise to the standard autoregressive integrated moving-average 
(ARIMA) model, rendering the ARIMA model a special case of the ARFIMA model. The 
stochastic process y is both stationary and invertible if all roots of O(L) and O ( L )  lie outside 
the unit circle and [d[ < 0.5. The process is non-stationary for d ~> 0.5, as it possesses infinite 
variance (Granger and Joyeux, 1980). Assuming that d E (-0.5,  0.5) and d # 0 ,  Hosking 
(1981) showed that the.correlation function p(.) of an ARFIMA process is proportional to 
/:,t-I as ]--, ~. Consequently, the autocorrelations of the ARFIMA process decay hyperboli- 
cally to zero as/--~ ~, which is contrary to the faster geometric decay of a stationary ARMA 

0! 
process. For d ~ (0, 0.5), Ei~_0, IP(/)[ diverges as n--*~, and the ARFIMA process is said to 
exhibit long memory, or long-range positive dependence. The process exhibits intermediate 
memory, or long-range negative dependence, for d ~ (-0.5,  0)) The process possesses only 
short memory for d = 0 (corresponding to the standard ARMA model). For d E [0.5, 1) the 
process is mean reverting as there is no long run impact of an innovation to future values of 
the process. 

Other  writers refer to a process as a long-memory process if d # O. 
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Geweke and Porter-Hudak (1983) suggested a semiparametric procedure to obtain an 
estimate of the fractional differencing parameter d based on the slope of the spectral density 
function around the angular frequency s c = 0. More specifically, let I(~:) be the periodogram of 
y at frequency s r defined by 

'I T I' I(~) = 2'rrT ~ exp(itsc) (Y,-  Y) • (3) 
I = !  

Then the spectral regression is defined by 

In[l(~̂ )] =/3,, +/3, In[sin'(-~) ] + ~^ , A = l , . . . , v  (4) 

where ~:̂  = 2~rA/T (A = 0 , . . . ,  T -  1) denotes the harmonic ordinates of the sample, T is the 
number of observations and v = g(T)<< T is the number of harmonic ordinates included in 
the spectral regression. 

Assuming that limr.~[g(T)]=o~, limr.~[g(T)/T]=O and limr._,=(inT)2/g(T)=O, the 
negative of the OLS estimate of the slope coefficient in (4) provides an estimate of d. Geweke 
and Porter-Hudak (1983) proved consistency and asymptotic normality for d <0 ,  while 
Robinson (1990) proved consistency for d ~ (0, 0.5). Hassler (1993a,b) proved consistency 
and asymptotic normality in the case of Gaussian autoregressive moving-average innovations 
in (1). The spectral regression estimator is not T 1/2 consistent as it will converge at a slower 
rate. The theoretical asymptotic variance of the spectral regression error term is known to be 
,rr2/6. 

3. Data and empirical estimates 

The series studied include three aggregate stock indices: two at daily frequencies and one at 
a monthly frequency. We also consider seven sectoral monthly stock indices, and daily prices 
for the 30 companies included in the Dow Jones Industrials index. Further details of the data 
set (constructed from CRSP Daily Stock Master and CITIBASE databases) appear in the 
tables below. All sqlbsequcnt analysis is done on the first-differenced logarithmic series 
(returns series). 

Tables 1 and 2 report the empirical estimates for the fractional differencing parameter d as 
well as the test results regarding its statistical significance based on the spectral regression test. 
The number of low frequency periodogram ordinates used in the spectral regression must be 
chosen judiciously. Improper inclusion of medium or high frequency periodogram ordinates 
will contaminate the estimate of d; at the same time too small a regression sample will lead to 
imprecise estimat,zs. We report d estimates for v = T °'5°, T °'5"~ and T ~L*° in order to evaluate 
the sensitivity of our results to the choice of v. To test the statistical significance of the d 
estimates, two-sided (d = 0 vs. d ~ 0) as well as one-sided (d = 0 vs. d < 0 and d = 0 vs. d > 0) 
tests are performed. The known theoretical variance of the spectral regression error ,n" :/6 is 
imposed in the construction of the t statistic for d. 

As Table 1 indicates, there does not appear to be any consistent convincing evidence 
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Table 1 
Empirical estimates for the fractional differencing parameter d for stock index returns 

Returns series Number of d(0.50) d(0.55) 
observations 
or sample 
period 

a(o.6o) 

S&P 500 Index (D) 

Nasdaq Index (D) 

Dew Jones Industrial Average (M) 

S&P Composite (M) 

S&P Capital Spending (M) 

S&P Consumer Goods (M) 

S&P Financials (M) 

S&P lndustrials (M) 

S&P Transportation (M) 

S&P Utilities (M) 

8180 -0.032 -0,018 -0,012 
(-0.443) (-0.322) (-0.270) 

557 i 0.057 0.076 O. 107 
(0.704) (1.182) (2.113) ++'** 

47:01-95: I ! -0.250 -0.109 -0.057 
( -  1.552)** (-0.832) (-0.521) 

47:01-95:10 -0.288 -0.071 0.010 
( -  1.789)' '** (-0.542) (-0,091) 

47:01-95:10 -0.330 -0.068 -0.062 
(-2.055) ̀ +'** (-0.519) (-0.573) 

47:01-95:10 -0,212 0,014 0,014 
( -  1,321 )* (0.108) (0.132) 

70:01-95:10 -0.061 -0.152 -0,178 
(-0.303) (-0.923) ( -  1,296)~ 

47:01-95:10 -0.277 -0.073 0,019 
( -  1,719)*'** (-0.553) (0,176) 

70:01-95:10 - 0.275 - 0.204 - 0.195 
( -  !.365)* ( -  1.234) ( -  1.422) ~ 

47:01-95:10 -0.248 -0,201 -0.082 
( -  1,545)* ( -  1.524)* (-0,755) 

Notes: The last day of observation for the S&P 5(X) and Nasdaq index returns series is 30 December 1994. 
d(0.50), d(0,55) and d(0.60) give the d estimates corresponding to the spectral regression of sample size v = T "s", 
v ~ T "'~ and v =~ T ','~'' respectively, The t statistics are given in parentheses and are constructed imposing the 
known theoretical error variance of w'/6. ~'t',, t~ and t indicate statistical significance for the null hypothesis d = 0 
against the alternative d # 0  at the I%, 5% and 10% levels respectively. ***, ** and , indicate statistical 
significance for the null hypothesis d- -0  against the one-sided alternative d > 0 at the I%, 5% and 10% levels 
r~spcctively, §§§, §§ and § indicate statistical significance for the null hypothesis d = 0 against the one-sided 
alternative d <0  at the I%, 5% and 10% levels respectively. D (M) stands for daily (monthly) frequency. 

supporting the long-memory (biased random-walk) hypothesis for the returns series of any of 
the aggregate or sectoral stock indices. When we consider the returns series of the Dew Jones 
lndustrials companies in Table 2, there is scattered evidence of fractal structure in some of the 
series. Strong evidence of long memory is found only for Boeing and Eastman Kodak, while 
weaker evidence is found for Merck, Sears and Woolworth. These returns series exhibit 
long-memory features. In the time domain, long memory implies that the series eventually 
exhibit strong positive dependence between distant observations while, in the frequency 
domain, the spectral density becomes unbounded as the frequency approaches zero. For 
International Paper and Texaco, there is clear evidence of intermediate memory; weaker 
evidence exists for Allied Signal. In the time domain, these returns series exhibit long-range 
negative dependence while, in the frequency domain, their spectral density approaches zero as 
the frequency approaches zero. For the remaining 22 stock returns scries there is no evidence 
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Table 2 
Empirical estimates for the fractional differencing parameter d for daily stock returns of the Dow Jones Industriais 
firms 

Stock returns series Number of d(0.50) d(0.55) d(0.60) 
observations 

A T r  8178 0.018 -0.013 -0.008 
(0.251) (-0.231) (-0.179) 

Allied Signal 8177 -0.125 -0.125 -0.023 
(-1.709) *'~ (-2.187) *''"" (-0.520) 

Alcoa 8179 -0.033 -0.078 -0.087 
(-0.460) (-1.367) ~ ( -  1.940) *''~'~ 

American Express 4453 0.061 0.071 0.002 
((}.697) (1.031) (0.039) 

Bethlehem Steel 8179 -0.073 -0.052 -0.037 
(-0.999) (-0.9()5) (-0.834) 

Boeing 8179 0.165 0.121 0.078 
(2.249)+ r,.:~ t (2. 119)' t,~t~ t (1'735) +' *~j~ 

Caterpillar 8179 0.005 - 0.027 - 0.064 
(0.070) (-0.474) ( -  1.442)* 

Chevron 8179 -0.085 -0.046 -0.056 
( -  1.156) (-0.812) ( -  1.264) 

Coca Cola 8179 0.070 0.052 0.050 
(0.953) (0.913) (1.125) 

Disney 8179 0.013 0.036 0.009 
(0.189) (0.643) (0.218) 

DuPont 8178 0.059 0.013 0.013 
(0.809) (0.237) (0.298) 

Eastman Kodak 8179 0.133 0.090 0.102 
( 1.816)+ '** ( 1.572)** (2.276) +*'* ~ 

Exxon 8179 0.()65 - 0.1}68 - 0.070 
(0.889) ( -  1.184) ( -  1.568) ~ 

General Electric 8179 - 0.012 0.009 0.020 
(-0.173) (0.170) (0.465) 

General Motors 8178 0.020 0.043 0.063 
(0.279) (0.758) ( 1.419)* 

Goodye a r 8179 0.058 0.007 - 0.006 
((I.799) (0.133) (--0.154) 

IBM 8176 0.007 -0.037 0.007 
(0.102) (-0.646) (0.168) 

International Paper 8179 -0.094 -0.146 -0.097 
(-1.285) ~ (-2.555) ++'~*~ (-2.166) +*'~ 

McDonalds 7169 -0.081 -0.022 0.050 
( -  1.069) (-0.370) (1.081) 

Merck 8179 0.153 0.097 0.033 
(2.090) ~+.** (1.702) ~'** (0.745) 

Minnesota Mining & Manufacturing 8179 -0.061 -0.063 -0.052 
(-0.834) ( -  1.096) ( -  1.154) 

Morgan JP 6508 -0.049 -0.(}03 -0.024 
(-0.626) (-0.055) (-0.496) 

(Continued on p. 258) 
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Table 2 (Contd.) 

Stock returns series Number of d(0.50) d(0.55) d(0.60) 
observations 

Phillip Morris 8178 -0.076 -0.025 -0.019 
(-1.034) (-0.443) (-0.427) 

Procter & Gamble 8179 -0.031 -0.053 -0.028 
(-0.422) (-0.927) (-0.643) 

Sears 8179 0.040 0.092 0.111 
(0.551) ( 1.615)** (2.476)**'*** 

Texaco 8178 -0.136 -0.098 -0.078 
( -  1.858) 1 .H ( - i. 718) t.~ ( - I. 748)* '~ 

United Carbide 8179 0.080 0.004 0.014 
( 1.091 ) (0.071) (0.321) 

United Technology 8177 0.(X)I 0.024 -0.007 
(0.024) (0.424) (-0.163) 

Westinghouse 8179 0.055 0. ! 07 0.067 
(0.756) ( i.861 )t,,, ( 1.508)* 

Woolworth 8179 0.097 0.091 0.095 
( 1.322 ) ( 1.585 )* (2.127)*+'** 

Notes: The last day of observation for the Dow Jones lndustrials companies' returns series is 30 December 1994. 
All series are of daily frequency. See notes in Table 1 for explanation of symbols in the table. 

of fractal structure. Based upon this evidence, fractal dynamics do not appear to be a universal 
feature of stock returns at either the aggregate or the disaggregate level. Limited evidence of 
fractal structure for some individual companies' stock returns is established, with the nature of 
fractional dynamics being dissimilar across these series. 

4. Conclusions 

We applied the spectral regression method to test for fractal structure in aggregate stock 
returns, sectoral stock returns and stock returns for the companies included in the Dow Jones 
lndustrials index. No evidence of fractal structure is found in the stock indices. Some evidence 
of long memory is found for five company returns series while intermediate memory appears 
to characterize the returns series for three other companies. There is no obvious characteristic 
linking firms in these two groupings. These results highlight the similarities and differences in 
fractal structure across different companies' series, implying that fractal structure (where it 
exists) may be masked in stock indices nwing to aggregation. However, the overall findings 
from both aggregate and disaggregate data do not offer convincing evidence against the 
martingale model. 
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