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I. Introduction

An enormous amount of empirical work has been directed toward understanding the nature of
stock price movements. Early studies, such as those by Alexander [2; 3], Fama [10], and Fama
and Blume [11], support the contention that stock price changes follow a random walk. Thus
cycles that appear to exist are simply a statistical artifact. More recent efforts, namely Young [28],
Greene and Fielitz [12], Praetz [24], and Renshaw [25], however, provide some evidence against
this hypothesis and suggest that stock price changes follow some type of a cyclic time path.'
Explanations for these contradictory findings rely on the way that information is disseminated
to, processed by, and acted on by market participants. To date, three basic information-based
scenarios have appeared in the literature: (1) not all information is of equal importance, (2) not
all participants have the same information, and (3) not all participants are equal in their ability to
process information.

This latter scenario is the most recent and has been used by Heiner [13] to develop a theory
of predictable behavior by constructing a competence-difficulty (C-D) gap construct. Kaen and
Rosenman [16] extend Heiner’s [13] work to provide an explanation for the presence of nonperi-
odic cycles in asset prices, especially the prices (and returns) of common stock. They maintain
that, according to Heiner’s theory, market participants differ in their ability in making the correct
buy and sell decisions under uncertainty. In financial markets, the spread between the participants’
competence in conjunction with the complexity of the information, i.e., the C-D gap, results in
price changes in the same direction. If new contradictory information is of substantial import,
directional change occurs. Since the arrival of new information is posited to a random event, the
resulting periods of similar price change behavior appear to be nonperiodic cycles. Empirically,
Kaen and Rosenman [16] support their contention by citing several studies that have used rescaled

1. Respectively, these studies employ variance time function analysis, rescaled range analysis, spectral analysis,
and trading rules. Conceptually, in this application all approaches but rescaled range are somewhat suspect: variance time
and spectral analysis because of the characteristics of the marginal distribution (e.g., moments may not be defined) and,
to a lesser extent, trading rules because the trade indicated by ex post rules may not be able to be accomplished ex ante.
Rescaled range analysis is also subject to implementation problems; these will be discussed later in the paper.
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range (R/S) analysis to measure nonperiodic cycles in economic time series; special emphasis is
given to the Greene and Fielitz [12] study of stock returns and the rescaled range techinique itself.

As a statistical technique, R/S analysis has come under severe criticism since its introduction
by Hurst [15], much of which surfaced subsequent to the Greene and Fielitz [12] study. The
focal point of the analysis is the Hurst coefficient, which is a proportionality factor with an
expected asymptotic value of one-half. Empirical observation of a Hurst value exceeding one-half
is evidence of the Hurst phenomenon. Two radically different explanations have been offered to
account for this observation. One, which was comprehensively introduced by Mandelbrot and
Wallis [20] and later extended in an economic context by Mandelbrot [17; 18], maintains that
the true underlying stochastic process for price change series is fractional Brownian motion.
For this process, the existence of the Hurst phenomenon is interpreted as an indication of long-
term dependence in which observations in the pdst influence observations far in the future. The
other explanation regards the Hurst phenomenon as an empirical aomaly caused by certain
features in the series such as autocorrelation and trend [4; 26] and nonhomogeneities [6; 22].
Complex permutations of thede intrinsic characteristics may either delay or even preclude the
Hurst coefficient from ever obtaining its theoretical asymptotic value of one-half.2 The impact of
all preasymptotic behavior, except that relating to mean nonhomogeneity (a shifting mean), may
be adequately mitigated if the time series is long enough to enable the estimated Hurst coefficient
to converge to its theoretical limit. Unfortunately, except for some investigations into the issue
of bias, little research has been done cohcerning optimal record length. Extant empirical studies,
including the one by Greene and Fiélitz [12], appear either to use all the data available or to
employ a sample that is considered extremely long (e.g., 1000) by traditional econometric rather
than R/S standards. Nevertheless, the existence of preasymptotic behavior, whatever its origin,
suggests that strong reliance on the value of the Hurst coefficient to draw conclusions concerning
nonperiodic cycles may be unwarranted.

Therefore, because of the potential impottance of the Kaen and Rosenman supposition and
of the implications of the ptesence of cycles in stock price movements in general, the purpose of
this study is to re-evaluate and extend the Greene and Fielitz [12] study by explicitly addressing
the issue of preasymptotic behavior and by using a longer (chronological not observational) data
set.> The findings indicate that although the Hurst coefficients are somewhat similar to those
obtained by Greene and Fielitz [12], as a group they are not significantly different from white
noise when those estimates suspected of displaying preasymptotic behavior are eliminated. It is
important to recognize that this finding does not deny the C-D gap hypothesis as postulated by
Kaen and Rosenman [16], but it does suggest that additional supporting evidence should precede
its wholehearted acceptance.

I1. The Data

Two hundred randomly selected stocks are analyzed for the 18.5 year period beginning July 1962
and ending December 1980. For each stock, 965 weekly rates of return are computed from the

2. Mandelbrot and his compatriots acknowledge the existence of preasymptotic behavior, but they believe that its
impact dies out very quickly and can thus be statistically avoided. Their technique is subsequently discusséd.

3. The usefulness of this re-examination is further underscored by noting that the C-D gap hypothesis is surfacing
in other market behavior literature. For example, Biasco [5] uses it as part of his explanation for the presence of cycles in
foreign exchange rates.
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CRSP daily stock return file. Weekly rates of return for the CRSP value-weighted index are also
obtained. For this analysis, weekly returns are preferable to daily returns since the former tend to
smooth out very short-term fluctuations.

This data base differs from the one used by Greene and Fielitz [12]. They employed five
years of daily data containing 1225 observations commencing at the end of 1963. Although the
statistical sample sizes are approximately equal, economically the 18.5 year chronological time
span seems preferable since it provides a more realistic opportunity for nonperiodic cycles to
reveal themselves.

III. Rudiments of R/S Analysis

The primary use of R/S analysis is to detect one variety of long-term dependence. In the R/
S sense, positive long-term dependence (persistence) occurs when there is relatively more vari-
ability in the low frequencies than in the high ones. White noise exists when the variability is
uniform across all frequencies. Negative dependence is present when high frequencies contain
more variability than do the low frequencies. All three cases are consistent with the presence
of short-term random fluctuations. In fact, it is the purpose of R/S analysis to remove these
obscuring short-term patterns so that the long-term behavior may be more readily observed.

Following the lead of Greene and Fielitz [12], the G-Hurst estimator, which was developed by
Mandelbrot and Wallis [20], is used. This approach is the one that has been commonly employed in
other economic studies and has been demonstrated to be statistically robust.* A thorough statistical
description of the technique is beyond the scope of this paper; nevertheless, it is necessary to
define quantitatively the Hurst coefficient, to describe how it is estimated, and to discuss its
interpretation.’

The components of R/S analysis may be defined in the following way. Let X(¢) be a discrete,
stationary time series containing T observations and X *(¢ ) be the series’ corresponding cumulative
sum. The range, R(z, s ), is given by

R(t,s) = max(d) — min(d) for 0 =u =, (D
where
d={X"(t +u)—[X"(t) + (u/s)X"(t +5) = X"(1))]},

and where ¢ is any starting point in X* and s is the length of any feasible subseries. In this
formulation, the range reflects the trend of the subseries, which is entirely defined by the subseries’
endpoints, ¢ and ¢ + 5. Schematically, R(z,s) for a given starting point and subseries size is
depicted in Figure 1.

4. Other examples of R/S applications concerning price behavior include Booth, Kaen, and Koveos [7], Helms,
Kaen, and Rosenman [14], and Booth and Koveos [8].

5. For a comprehensive understanding of the technique, see not only Mandelbrot and Wallis [20] but also Wallis
and Matalas [27], and the citations contained in each. Note that other approaches to measure the Hurst coefficient exist.
For instance, Hurst originally suggested a point estimate based on the entire series. Also Salas et al. [26] have proposed
a local slope estimator, which approximates the Mandelbrot and Wallis measure if the underlying stochastic process is
self-similar. Still other approaches exist but they presuppose a particular stochastic process. For example, McLeod and
Hipel [21] develop a maximum likelihood estimator that requires fractional Brownian motion.
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X*(t), cumulative sum

| |
t t+s

Time
Figure 1. Illustration of R(¢, s)

If the marginal distribution is non-normal, reliance on R(t, s) to measure the Hurst coeffi-
cient may lead to erroneous conclusions. This potential problem, however, is easily remedied by
rescaling the range by dividing it by the standard deviation of the original series, S(¢, s), where

S s

S(t,s)={(1/s) Z (r+u) = (1s)[ > X(t +u) ). (2)
u=1 u=1
Since non-normal distributions are commonplace, this range rescaling is routine.
Mandelbrot and Wallis [20] state that the rescaled range of a subseries is asymptotically
related to its length. Specifically,

R(t,s)/S(t,s) ~ cs",s =3, 3

where ¢ is a scale constant that is partially determined by the original series’ volatility and 4 is
the Hurst coefficient.

To estimate 4, numerous R/S values are obtained by varying the subseries size. In this case,
the G-Hurst (hereafter GH) procedure is used to obtain 38 subseries, ranging in length from s =
10 to s = 890.¢ The specific values of s are provided by Wallis and Matalas [27] and have been
demonstrated by them to extract the maximum amount of information. For each subseries size,
15 samples are selected. Beginning with the initial observation, these samples are sequential and

are uniformly spaced throughout the time series. For each of the 15 samples, the R/S statistic is

6. An alternative to this sampling with replacement approach is the F-Hurst procedure. It uses all possible subseries
to estimate A rather than only a selected few. Simulations by Wallis and Matalas [27], however, indicate that the G-Hurst
procedure provides results very similar to F-Hurst and uses much less computer time.
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calculated. The Hurst coefficient is determined by first transforming relation (3) into an equality
and linearizing so that

~

In[R(t,5)/S(t,5)| = In(é) + hIn(s) + e, 4)

where the dependent variable is the mean of the 15 samples. Then equation (4) is estimated using
ordinary least squares regression. Two regression estimates (GH(10) and GH(50), with the number
in parentheses denoting the length of the smallest subseries) have become commonplace. Although
the GH(50) specification reduces the number of regression observations (in this case from 38
to 24), Mandelbrot and Wallis [20] point out that if there is some evidence of preasymptotic
behavior, GH(50) is preferred because the offending transcient observations (i.e., preasymptotic
behavior) are more likely to have been eliminated.

From an interpretational perspective, when h = .5, the series is labeled as containing only
white noise. Positive long-term dependence, the Hurst phenomenon, is present if .5 < h<1.0.
In this case, observations tend to stay away from the overall mean for an extended period of time;
they change direction cross and the mean, and then move away from the mean, also for a long
period of time. The behavior repeats itself but no regularity in the pattern of directional switching
exists. When 0 < h < .5, negative long-term dependence exists. In this instance, observations
tend to offset each other, giving the observed series the appearance of short-term irregular cycles.
The extreme Hurst values are 4~ = 0 and h = 1, with the former signifying that the underlying
series is a sine wave (periodic cycle) and the latter indicating that the series contains a nonstation-
ary mean in the form of a trend. v

One difficulty underlying the Mandelbrot and Wallis [20] technique (and others as well)
is that & is a biased estimator. In addition, the regression assumption that the error terms are
serially independent is routinely violated. Thus the classic ¢-statistic criterion used in hypothesis
testing must be cautiously interpreted and, perhaps, discarded. As a reflection of the theoretical
asymptotic relationship between R/S values and subseries size, the magnitude of the bias is related
to the length of the overall series. Bias is also related to the nature of underlying stochastic process
itself. Despite its importance, work investigating the nature and extent of bias is sparse. Other
than Wallis and Matalas [27], there are but a few examples, and these, like Anis and Lloyd [1],
usually presuppose different Hurst estimation procedures. Nevertheless, as a result of analyzing
different types of stochastic processes, Wallis and Matalas [27] indicate that although on the
average the potential bias may not be large, a large variance among the individual estimates exists.
Depending on the stochastic process, it appears that for a series containing 1000 observations, the
G-Hurst estimates are overstated by values ranging from .01 to .04, with corresponding standard
deviations ranging in size from .05 to .10. As a specific example, application of the GH(10)
procedure to repeated simulations of an independent Gaussian process, results in 68 percent of
the Hurst coefficients falling between .47 and .57 and a median of .51.

In the analysis that follows, specific attention is given to these issues. In particular, the pos-
sibility of nonstationary means is examined, and the impact of potential preasymptotic behavior
on the Hurst coefficients is explicitly addressed.

IV. The Results

Because of the large number of Hurst coefficients calculated, frequency distributions are used to
summarize the estimates. The distributions for GH(10) and GH(50) are displayed in Table I.
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Table I. Frequency Distribution of Hurst Coefficients

Greene-Fielitz 200 Stocks 200 Simulated 60 Simulated
Hurst 200 Stocks 200 Stocks Nonsystematic 68 Stocks Stocks Stocks
Interval Total Returns* Total Returns Returns Total Returns Total Returns Total Returns

Panel A: GH(10) Hurst Coefficients

Under .401 — — —_ —_ — —_
1401 - .450 | — 7 1 7 4
1451 -.500 35 28 40 16 35 15
.501-.550 93 73 70 24 74 21
.551-.600 63 73 64 21 69 17
.601 - .650 7 24 18 6 14 2
.651-.700 | 2 1 — | 1
Over .700 — — — — — —

Note: & = .59 for the market index

Panel B: GH(50) Hurst Coefficients
Under .401 2 3 3 2 11 5
.401 - .450 26 24 24 7 27 9
.451-.500 40 41 35 14 37 15
.501-.550 71 33 39 16 49 15
.551-.600 40 55 52 17 43 11
.601—.650 18 30 29 8 23 3
.651-.700 2 12 13 4 9 1
Over .700 1 2 5 — 1 1

Note: i = .57 for the market index

*(12, 345).

As a first step, consider the first two columns in the GH(10) and GH(50) panels in Table I. In
the first column, the frequency distributions for the 200 Hurst coefficients calculated by Greene
and Fielitz [12] is reproduced. The second column summarizes the Hurst values for the 200 stocks
used in this study. A casual comparison of the respective GH(10) and GH(50) distributions reveals
a surface similarity. A y? test, however, indicates that this similarity hypotheses must be rejected
in both cases.” The mean of this study’s distribution is somewhat larger, a result of the right tail
containing relatively more observations. This phenomenon tends to confirm the notion that the
longer chronological time period covered herein provides a better opportunity for nonperiodic
cycles to assert themselves, if they indeed exist. In any case, similar to the Greene and Fielitz [12]
results, long-term dependence of some sort does seem to be present in common stock returns.

As indicated earlier, however, it is possible that this phenomenon may be a result of a
nonstationary mean or preasymptotic behavior, and consequently, not truly reflect the presence of
long-term memory. Turning to the first possibility, an analysis of the autocorrelation functions of
each of the 200 stock return series does not reveal any significant autocorrelation patterns nor the

7. For these and all the following y 2 tests, the following frequency intervals are used: GH(10): .500 and under,
.501-.550, .551-.600, and .601 and over; GH(50): .450 and under, .451-.500, .501-.550, .551-.600, and .601 and over.
These are obtained by combining some of the categories depicted in Table I in order to provide an adequate number of
observations in each cell. Critical y > values at the 95 percent confidence level are 7.81 and 9.49 for GH(10) and GH(50),
respectively. The calculated x * values in this case are 21.6 for GH(10) and 59.85 for GH(50).
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presence of spikes. These observations support the contention that these distributions are mean
stationary.

As an additional check, the market model is used to decompose total return into its system-
atic and nonsystematic elements.® The market is assumed to be appropriately represented by the
value-weighted CRSP index. The Hurst coefficients associated with the nonsystematic returns are
presented in the third column in Table I. If the market model holds, these coefficients should
be compatible with white noise. To test for this relationship, 200 Gaussian independent (h = .5)
series containing 965 observations are simulated. The frequency distributions for these Hurst co-
efficients are displayed in the fifth column in Table I. Employing x? tests reveals that the two
GH(10) distributions are similar to each other (,\/2 = 2.25) but the two GH(50) distributions are
not (X2 = 13.15). Thus, from a probabilistic perspective, for GH(10) removal of systematic re-
turns results in white noise residuals. On the average, however, after the removal, some evidence
of positive long-term dependence still exists, when measured by GH(50).

Because of the importance of the asymptotic assumptions in estimating the Hurst coeffi-
cients, these are checked explicitly by testing whether the relationship between the R/S values and
subseries length is proportional (linear in logarithmic form).> Operationally, this is accomplished
by creating two GH(10) regression models by incorporating a slope dummy in equation (4) that is
equal to one for either the last 7 or 15 of the 38 observations and zero elsewhere. If the coefficient
of the slope dummy variable is significantly different from zero at the .01 level for both regression
tests, the series is classified as displaying preasymptotic behavior. Rescaled range analysis using
GH(10) or GH(50) procedures is inappropriate for return series falling into this class. Of the 200
series tested using this approach, only 68 are able to be classified as not exhibiting preasymptotic
behavior. The frequency distributions for these Hurst coefficients are reported in the fourth column
of Table I. Employing the same testing procedure to the 200 simulated white noise data yields
only 60 survivors. The Hurst frequency distribution for these 60 stocks are presented in the sixth
column of Table I. Comparison of the 68 stock distributions to their 60 white noise counterparts
indicates that the GH(10) distributions are indistinguishable (y*> = 2.07) but the GH(50) distribu-
tions are somewhat different (x? = 11.84). Similar to the analysis of nonsystematic returns, the
GH(50) procedure appears to detect more long-term dependence than the GH(10) procedure.

Finally, from a slightly different perspective, it is useful to note that the mean Hurst co-
efficients for the simulated white noise series are .538 and .525 for the GH(10) and GH(50)
procedures, respectively. Their respective standard deviations are .045 and .078. Moreover, the
null hypotheses that these two distributions are normal cannot be rejected (GH(10): xy? = 2.25;
GH(50): ,\/2 = 1.84). These numbers, in conjunction with those mentioned earlier that were de-
veloped by Wallis and Matalas [27], suggest that Hurst values between .4 and .6 are commonplace
and do not necessarily signal long-term dependence. Thus even the Hurst values for the market
returns, which are reported in Table I, may not represent long-term dependence.'

8. This approach is an economic adaption of the procedure used by Potter [23] to remove the impact of a potential
shifting mean in his study of the presence of long-term dependence in rainfall. Note, however, that it has been recently
demonstrated by Chen, Roll, and Ross [9] that in comparison to other macroeconomic factors the market index may not
be a particularly important explainer of security returns.

9. This test is similar to using the GH(50) instead of GH(10) estimate of the Hurst coefficient as a measure of
long-term dependence. However, not only does it provide an explicit test of the linearity assumption but also it focuses on
the R/S behavior of the large subseries.

10. The inability to reach firm conclusions of long-term dependency when h lies within the .4 to .6 band has
important implications for the Kaen and Rosenman [16] hypothesis. According to Mandelbrot and Wallis [19], the length
of the longest nonperiodic cycle is a function of the total number of observations, the value of the Hurst coefficient, and
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V. Conclusions

The conclusions from the above analysis are relatively straight-forward. Rescaled Range analysis
is a potentially useful technique but conclusions drawn from its application must be conditioned
on the validity of its underlying assumptions. The apparent pervasiveness of their nonvalidity,
however, does restrict the technique’s scope.

In the case of common stock returns, the weight of evidence suggests that either long-
term dependence is not prevalent or that it is foo small to be accurately measured by rescaled
range analysis. A large number of the Hurst coefficients that appear to signify some type of
dependence are likely to occur by chance only. The conclusion holds for individual stocks as
well as the market. This finding of general nonexistence of long-term dependence in the rescaled
range sense, which contradicts the conclusions of Greene and Fielitz [12], suggests that if the
information processing behavior as suggested by the competence-difficulty gap hypothesis is to
be convincingly accepted, additional empirical support for it must be forthcoming.

the underlying stochastic process. For instance assuming that the true process is fractional Brownian noise, which they
maintain is the best candidate to model the Hurst phenomenon, the ratio between the wavelength and the series length is
approximately .33 for h = .7 and O for h = .S. For a 965 week series, h = .6 yields a wavelength of over two years. Since
h values of less than .6 are not readily distinguishable from white noise, smaller persistent cycles cannot be confidently
identified using this technique. Thus, to support their (C-D) gap hypothesis, Kaen and Rosenman [16] need to develop a
rationale for at least a two year gap. Their appeal to the learning lag associated with the product development process as
a raison d’étre for nonperiodic cycles and the C-D gap appears to be misplaced inasmuch as a plausible length for this lag
for many products would seem to be less than two years. Exceptions undoubtably do exist, however.
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