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ARBITRAGE WITH FRACTIONAL BROWNIAN MOTION

L. C. G. ROGERS1

School of Mathematical Sciences, University of Bath, Bath, United Kingdom

Fractional Brownian motion has been suggested as a model for the movement of log share prices
which would allow long-range dependence between returns on different days. While this is true, it
also allows arbitrage opportunities, which we demonstrate both indirectly and by constructing such an
arbitrage. Nonetheless, it is possible by looking at a process similar to the fractional Brownian motion
to model long-range dependence of returns while avoiding arbitrage.
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1. INTRODUCTION

The log-Brownian model for the movement of share prices is widely used in the theory of
mathematical finance, but empirically demonstrated to be incorrect in a number of ways.
Various alternatives have been suggested to account for empirically observed deficiencies,
among them the fractional Brownian motion, which displays dependence between returns
on different days, in contrast to Brownian motion. However, as we will prove, the fractional
Brownian motion isnota semimartingale (except in the Brownian case), and therefore there
can be no equivalent martingale measure; by general results this means that there must be
arbitrage. We then give a direct construction of arbitrage with fractional Brownian motion.
While this may be the end of fractional Brownian motion as a model for the movement of
the price of a share, it is not the end ofall attempts to model a share price process with long-
range dependence of returns. Formally, the fractional Brownian motion is the convolution
of Brownian increments with a power-law kernel, and the arbitrage is happening because
of the behavior of that kernel near zero. Long-range dependence is happening because of
the behavior of the kernel at infinity, so the remedy is clear; we convolute the Brownian
increments with some kernel which has the same behavior at infinity but a more orderly
behavior at zero, and everyone will be happy! The conclusion shows one way in which this
can be done.

To explain the problem in more detail, if(Wt )t∈R is a standard Brownian motion with
W0 = 0 (so the paths ofW are continuous, and the increments ofW over disjoint intervals
are independent zero-mean Gaussian random variables with variance equal to the length of
the interval), then the fractional Brownian motion(Xt )t∈R with self-similarity parameter
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H ∈ (0, 1) is defined by2

Xt ≡ k

[∫ t

−∞
(t − s)H−1/2 dWs −

∫ 0

−∞
(−s)H−1/2 dWs

]
,(1.1)

where

k−2 ≡ (2H)−1+
∫ ∞

0
((1+ v)H−1/2− vH−1/2)2 dv.

The processX is clearly a zero-mean Gaussian process, and the constantk is chosen to
normalize the covariance structure neatly:

E|Xs − Xt |2 = |t − s|2H .(1.2)

The caseH = 1
2 corresponds to the familiar situation of Brownian motion, andX is in

general a self-similar process; for anyc > 0,

(X(ct))t∈R
D= (cH Xt )t∈R.(1.3)

At an intuitive level, it is easy to explain both of the results of this paper. First, from (1.2)
we see that the increments process ofX is stationary and thatXt+δ − Xt ∼ δH , which
suggests that

2n∑
j=1

|X( j 2−n)− X(( j − 1)2−n)|p ∼ (2n)1−pH .(1.4)

Lettingn→∞, we expect that the order-p variation ofX will be infinite if p < H−1, and
zero if p > H−1. This is only consistent with semimartingale behavior ifH = 1

2.
For the construction of arbitrage, we note that fort > 0,

E(Xt |G0) =
∫ 0

−∞

{
(t − s)H−1/2− (−s)H−1/2

}
dWs,(1.5)

whereGt ≡ σ({Wu : u ≤ t}). If we knew thatE(Xt |G0) = E(Xt |F0), whereFt ≡
σ({Xu : u ≤ t}), we may conclude from (1.5) that seeing(Xu)u≤0 gives us information
about the future behavior ofX (except in the caseH = 1

2), which can be exploited in the
obvious way; ifE(Xt |F0) > 0, we would make a positive investment in the asset, but if
E(Xt |F0) < 0 we would short the asset. What remains is to show that we can carry out

2Strictly speaking, the two integrals on the right side of (1.1) cannot be defined separately, but the formally
correct definition

Xt ≡ k

∫ ∞
−∞

{
((t − s)+)H−1/2 − (s−)H−1/2

}
dWs

does make good sense, even though it is less digestible than (1.1).
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the trading in a sufficiently controlled way to make arbitrage in finite time while ensuring
that the wealth process will never fall below some fixed level. As the reader will see from
Section 3, several of the steps involved require care; sinceX is not a semimartingale, we
have to rely on more elementary properties. Finally, in Section 4 we show how simple
change-of-measure properties extend the conclusions of Sections 2 and 3 to more general
Gaussian processes of the formXt =

∫ t
−∞ a(t − s) dWs, wherea(t) ∼ t H−1/2(t ↓ 0).

The first result of this paper has been known for some time; it certainly appears in
the paper of Maheswaran and Sims (1993), and indeed was known to the present author
in 1989 when the issue was drawn to his attention by Walter Willinger. Quite possibly
other earlier references exist.3 However, since the fractional Brownian motion continues
to appear as a model for an asset price process (for example, in Peters 1991 and Bouchaud
and Sornette 1994), it seems that the problems in using it as an asset price process need to
be more widely known. To amplify, the first result implies that forH 6= 1

2 the processX
is not a semimartingale and therefore there can be no equivalent probability under which
X becomes a local martingale. Thisalmostimplies that there is arbitrage; Delbaen (1992)
proved that the existence of an equivalent martingale measure is equivalent to the NFLVR
(= no free lunch with vanishing risk) condition. This condition is more restrictive than
the condition that there is no arbitrage and, indeed, Delbaen and Schachermayer (1994)
and Back and Pliska (1991) give examples where the condition holds, but the NA (= no-
arbitrage) NFLVR condition does not. To be exact, we say that an arbitrage exists if
there is some trading strategy whose gains process(ξt )0≤t≤1 satisfies (i)ξ0 = 0 ≤ ξ1, (ii)
ξt ≥ −1 for all 0 ≤ t ≤ 1, and (iii) P(ξ1 > 0) > 0. It is immediate that the existence
of an arbitrage in this strict sense implies existence of a FLVR, but the converse is false.
Maheswaran and Sims describe a trading strategy which by time 1 can create a wealth
whose mean is at least 1 and whose variance is as small as one wishes, but this fails to be an
arbitrage because condition (ii) fails, and this really matters, since this is the condition which
prevents arbitrage by double-or-quits strategies played on Brownian motion. Delbaen and
Schachermeyer (1994, Theorem 7.2) give a proof in a general setting that if a processX is
not a semimartingale, there must exist a FLVR. Not surprisingly, with the specific structure
of a fractional Brownian motion, we can do better; theredoesexist an arbitrage in the strict
sense defined above and the somewhat delicate task of constructing it is settled in Section 3.

2. FRACTIONAL BROWNIAN MOTION IS A SEMIMARTINGALE ONLY IF H = 1
2

The title of this section is its main result, and the proof follows the lines sketched in the
Introduction. Fix the parameterH of the fractional Brownian motion, and consider for
p > 0 fixed

Yn,p ≡
2n∑

j=1

|X( j 2−n)− X(( j − 1)2−n)|p(2n)pH−1.(2.1)

It is clear thatEYn,p = E|W1|p, the same for alln, and it is even true that‖Yn,p‖2 remains
bounded for alln. If we now consider

Ỹn,p ≡ 2−n
n∑

j=1

|Xj − Xj−1|p,

3A. N. Shiryayev tells me that it appears as an example in his 1986 book (in Russian) with R. S. LiptserTheory
of Martingales.
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this has (for eachn) the same law asYn,p. Noticing that the sequence(Xk − Xk−1)k∈Z is
stationary and ergodic, the ergodic theorem tells us that

Ỹn,p→ E|X1− X0|p ≡ cp (n→∞)

almost surely and inL1. Hence

Yn,p
D→ cp (n→∞)

and thereforeYn,p
P→ cp. Hence,

Vn,p ≡
2n∑

j=1

|X( j 2−n)− X(( j − 1)2−n)|p P→
{

0 if pH > 1,
+∞ if pH < 1.

(2.2)

If H > 1
2, we can choosep ∈ (H−1, 2) such thatVn,p → 0 in probability, and therefore

almost surely down a fast subsequence. This implies that the quadratic variation ofX is
zero, and so (ifX were to be a semimartingale)X must be a finite-variation process. But
since forp ∈ (1, H−1), Vp ≡ limn→∞ Vn,p is almost surely infinite, and (by scaling) the
order-p variation on any interval is infinite almost surely,X cannot be finite variation. If
H < 1

2, we can choosep > 2 such thatpH < 1, and the order-p variation of X on
[0, 1] (and hence onanyfixed interval) must be infinite. This contradicts the almost-sure
finiteness of the quadratic variation ofX, assumingX is a semimartingale. Either way, if
H 6= 1

2, X is not a semimartingale.

3. MAKING AN ARBITRAGE

As we indicated in the Introduction, there is a priori a difference betweenGt ≡ σ({Ws :
s ≤ t}) andFt ≡ σ({Xs : s ≤ t}) (thoughFt ⊆ Gt is obvious), which might matter for
the construction of arbitrage; if our arbitrage-generating investment policy (which will be
of a simple “buy-and-hold” nature) were adapted to(Gt ), would there necessarily be an
(Ft )-adapted arbitrage-generating policy? As it turns out, our construction of the arbitrage
need only see the smaller filtration(Ft ), but for its passing interest we record here a result
which shows that the two filtrationsare the same.

PROPOSITION3.1. For any a> 0,

E[Xa|Xu : u ≤ 0] =
∫ 0

−∞

|t/a|−H−1/2

a+ |t | Xt
H − 1/2

0( 1
2 + H)0( 3

2 − H)
dt(3.1)

=
∫ 0

−∞

{
(a− s)H−1/2− (−s)H−1/2

}
dWs.(3.2)

In particular, (Gt ) = (Ft ) to within null sets.
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We omit details of the proof; to prove (3.1) we take the integral representation (1.1) of
X and perform a change of order of integration to show it is the same as (3.2). Since (3.2)
is E[Xa|Wu : u ≤ 0], that proves all but the last assertion, and for the last assertion we find
that the process(

∫ 0
−∞(a−s)−c dWs)a>0 isF0 measurable forc = H− 5

2 (by differentiating
twice), andW can be recovered from this Mellin transform.

So now our task is to construct an arbitrage. We are going to split(−∞, 0) into⋃
n∈Z(−2−n+1,−2−n] and only trade in the share during intervals which look promis-

ing. During such an interval, if the gain of our investment in the share gets too high or too
low, we immediately sell it and wait until the end of the interval, thus ensuring bounded
gains on each time interval. The main task is to show that there do exist time intervals
which look promising; that there are plenty of them follows by stationarity.

LEMMA 3.1. Suppose that(Ä,F , (Ft )t∈R+ , P) is a filtered probability space and(Xt )t∈R+
is a continuous adapted process, with X0 ∈ L1(P). For any real a< b and0 ≤ t ≤ c
define

τ(t, c;a, b) ≡ inf{u > t : Xu 6∈ [a, b]} ∧ c.(3.3)

Suppose that for all rational a, b, c,q, for which q< c and a< b, we have

E(Xτ(q,c;a,b)|Fq) = Xq a.s.;(3.4)

then X is a local martingale.

Proof. First note that ifT ≤ c is any stopping time, then the equality (3.4) is easily
extended to

E(Xτ(T,c;a,b)|FT ) = XT a.s.,(3.5)

by approximatingT by T (n) ≡ 2−n([2nT ] + 1), a sequence of stopping times taking
discretely many rational values and decreasing toT .

Now fix N ∈ N, and defineζ ≡ τ(0, N;−N, N). We shall prove thatX(t ∧ ζ ) is a
martingale, and this will be sufficient. To this end, fixε−1 ∈ N and define the stopping
timesσ εn by σ ε0 = 0,

σ εn+1 ≡ inf{u > σεn : Xu 6= X(σ εn ), Xu ∈ εZ} ∧ ζ

for n ≥ 0. Evidentlyσ εn ↑ ζ as n ↑ ∞. It is also clear that(X(σ εn ),F(σ εn ))n≥0 is a
martingale, using (3.4). Since|X(σ εn )| ≤ N ∨ |X0| for all n, we have that for alln,

X(σ εn ) = E[Xζ |F(σ εn )],

and from this it follows easily that for allt < N,

Xt∧ζ = E[Xζ |Ft ].
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Now we know that (unlessH = 1
2) the fractional Brownian motionX is not a local

martingale; indeed, ifH < 1
2 we have from Section 2 that for somep > 2 the order-p

variation ofX is infinite over every interval of positive length (which is not consistent with
the locally finite order-2 variation of a continuous local martingale), and if, on the other
hand,H > 1

2, we shall have for somep < 2 that the order-p variation ofX is zero, which
would imply that the order-2 variation ofX is zero and, therefore, that the continuous local
martingaleX is constant.

Thus, we know that the condition (3.4) of Lemma 3.1 must fail for some rationalq < c
anda < b;

P[E(Xτ(q,c;a,b)|Fq) 6= Xq] > 0.(3.6)

This is not quite in the form we want for later use. Define for 0≤ t ≤ c and forα < 0< β

the stopping times

ρ(t, c;α, β) ≡ inf{u > t; Xu − Xt 6∈ [α, β]} ∧ c.

LEMMA 3.2. If (Xt )t∈R is fractional Brownian motion, H6= 1
2, then for someα < 0< β

and c> 0

P[E(Xρ(0,c;α,β)|F0) 6= X0] > 0.(3.7)

Proof. Suppose that the result were false; for allα < 0< β andq < c E(Xρ(q,c;α,β)|Fq)

= Xq almost surely. This contradicts (3.4), which we can see as follows. Withq, c,a, b
being now values for which (3.4) holds, we shall construct stopping timesTn ↓ τ(q, c;a, b)
with the property thatX − Xq is bounded on [q, Tn] for eachn, andE(X(Tn)|Fq) = Xq

for everyn. Takeδ ≡ b− a and define

Tn = q if Xq 6∈ (a, b]

= ρ(q, c;− j δ/n, (n− j + 1)δ/n) if ( j − 1)δn−1 < Xq − a ≤ j δn−1

for j = 1, . . . ,n. It is not hard to verify that theTn have the properties claimed and, if (3.7)
were to fail, thenE(X(Tn)|Fq) = 0 for all n. This would ensure that (3.4) fails, and we
know this is not correct.

Let us now see how to use Lemma 3.2 to make arbitrage. We shall make arbitrage by
investing suitably inX during the time interval [−1, 0). For eachn ∈ Z define the process

Yn(t) ≡ {X(−2−n(2− t))− X(−2−n+1)}2nH (0≤ t ≤ 1).

By the scaling properties ofX the sequence(Yn)n∈Z of C([0, 1])-valued random variables
is stationary, and even ergodic because

⋂
n σ(Yk : k ≤ −n) is contained in the tailσ -field

of W−t , which is trivial. If we letGn ≡ F(−2−n), then(Yn) is adapted toGn and because
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of Lemma 3.2 and scaling properties, there existα < 0< β andε > 0 such that

P[E[Yn(τn)|Gn−1] ≥ ε] ≥ ε,(3.8)

where

τn ≡ inf{t : Yn(t) 6∈ [α, β]} ∧ 1.

In view of this the ergodic theorem guarantees that

P[E(Yn(τn)|Gn−1) ≥ ε for infinitely manyn ≥ 0] = 1.(3.9)

Call the time interval(−2−n+1,−2−n] period n, and say that periodn is promising if
E(Y(τn)|Gn−1) ≥ ε. Since there will be infinitely many promising periods, we may describe
our investment strategy by saying that (at least to begin with) we invest unit amount in each
promising period, but shouldYn leave [α, β] during the promising period we immediately
sell our holding and wait until the end of the period. Thus the gain made during a promising
period is always bounded and has positive mean. Letηn denote the accumulated gain by
the end of periodn. Sinceα ≤ ηn − ηn−1 ≤ β, andE(ηn − ηn−1|Gn−1) ≥ ε, we may pick
λ > 0 so small that for alln,

E[e−ληn |Gn−1] ≤ e−ληn−1.

(Of course, if periodn is not promising,ηn = ηn−1!) Thus e−ληn is a nonnegative su-
permartingale, convergent almost surely to 0 (since there are infinitely many promising
periods). If we stopη at the first timeν thatη < α, then

P(ν <∞) ≤ exp(λα) = 1− θ < 1,

and on the event{ν = +∞}, ηn→∞. Now we can describe fully how we make arbitrage.
Invest unit amount4 in each promising period untileitherη has risen to 1or η falls to below
α. The former happens with probability at leastθ (and results in our gain of 1), while if the
latter happens we shall have lost at most 2|α|. If the latter happens proceed to invest1

2 in
each promising period until either the accumulated gainη has risen to 1or the accumulated
gain has fallen below 5α/2. If the latter happens, we shall have lost at most 3|α|, and we
proceed to invest14 in each promising period untileither η has risen to 1or η has fallen
below 13α/4. If we continue in this way, successively halving our stake when things go
badly, we shall eventually be successful and make net gain at least 1, and the worst that can
happen is that our wealth meantime could fall to 4α.

4That is, unit amount inY, which is the same as investing amount 2nH in X during periodn.
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4. EXTENDING TO GAUSSIAN PROCESSES SIMILAR TO
FRACTIONAL BROWNIAN MOTION

In this section we use routine change-of-measure arguments to show that if we convolute
Brownian motion with a kernel which is similar at zero (in a sense to be made precise) to the
kernel used to make fractional Brownian motion, then the existence of arbitrage persists.
In contrast, we show in Section 5 that we can smooth out the kernel at zero, remove the
arbitrage, but keep long-range dependence.

In Section 3 we created arbitrage by trading on the fractional Brownian motion only
during the interval [−1, 0), but we could just as well have made arbitrage in [0, 1) by
shifting the strategy by one unit of time to the right. The strategy so shifted will (with
probability 1) make net gain 1 with a lower bound on the wealth process throughout [0, 1];
so if we change to anequivalentmeasure, the same will be true, almost surely with respect
to the equivalent measure.

Let us write

ϕ(s) ≡ sH−1/2I{s>0} ≡ ϕ0(s)+ ϕ1(s),(4.1)

whereϕ0, ϕ1 are nonnegative, with the properties

ϕ1 is C3
b(R), with support in(1,∞),(4.2)

ϕ0 is compactly supported in[0, 2].(4.3)

Now define

Xi
t ≡

∫ t

−∞
ϕi (t − s) dWs −

∫ 0

−∞
ϕi (−s) dWs,

and observe that we may integrate by parts to expressX1 as

X1
t =

∫ t

−∞
{ϕ′1(t − s)− ϕ′1(−s)}Ws ds.

From this, it is not hard to check thatX1 is differentiable, with

d

dt
X1

t =
∫ t

−∞
ϕ′′1(t − s)Ws ds (t ≥ 0).

Next we aim to identify a processµ which will be nonzero only in [0, 1] with the property
that for 0≤ t ≤ 1,

X1
t =

∫ t

0
ϕ0(t − s)µs ds,(4.4)

this last integral being equal also to
∫ t

0 ϕ(t−s)µs ds for 0≤ t ≤ 1. If f isC2 with compact
support,f = X1 on [0, 1], we can solve the convolution equation (4.4)f = ϕ ∗µ by taking
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the Laplace transforms (denoted by a tilde) to obtain

f̃ (λ) = ϕ̃(λ)µ̃(λ) = λ−H−1/20(H + 1
2)µ̃(λ),(4.5)

yielding

µ̃(λ) = 1

0(H + 1
2)
λH−3/2λ2 f̃ (λ).(4.6)

Now sinceλH−3/2 is the Laplace transform oft3/2−H/0( 5
2−H), andλ2 f̃ (λ) is the Laplace

transform of the measuref ′′(t) dt + f ′(0)δ0(dt), we conclude from (4.6) that

µt =
{∫ t

0
(t − s)3/2−H f ′′(s) ds+ f ′(0)t3/2−H

}
/0( 5

2 − H)0(H + 1
2).(4.7)

Observe that, becauseϕ1 is supported in(1,∞), it follows that X1
t is F0-measurable for

all t ∈ [0, 1], and hence the process(µt )0≤t≤1 is againF0-measurable. We have then for
t ∈ [0, 1],

Xt = X0
t + X1

t(4.8)

=
∫ t

−∞
ϕ0(t − s) dWs −

∫ 0

−∞
ϕ0(−s) dWs +

∫ t

0
ϕ0(t − s)µs ds

=
∫ t

−∞
ϕ0(t − s){dWs + µs ds} −

∫ 0

−2
ϕ0(−s) dWs.

Since the processµ is continuous andF0-measurable, the drifting Brownian motiondW̃t ≡
dWt+µt dt is equivalent to Brownian motion, and so from (4.6), since arbitrage is possible
with X, it must also be possible withX0.

The processX0 comes from convolutingdW with a functionϕ0 which isequalto ϕ in a
neighborhood of zero, but would we still get arbitrage if we convolutedW with ϕ̃0, where
ϕ̃0 is like ϕ in a neighborhood of zero? We do. Suppose that we expressϕ0 = ϕ̃0 + ϕ̃1,
whereϕ̃1 ∈ C3(R), with support in [0, 2], andϕ̃′1(0) = 0. The argument is similar to that
given above; we seek a process(µ̃t )0≤t≤1 such that

∫ t

−∞
ϕ0(t − s)(dWs + µ̃s ds) =

∫ t

−∞
ϕ̃0(t − s) dWs + ξ,(4.9)

whereξ is some unimportantF0-measurable random variable. Providedµ̃ has enough
integrability, the process on the left of (4.9) is equivalent toX0, so an arbitrage can be
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constructed for the process on the right of (4.9). We need to pickµ̃ so that

∫ t

−∞
ϕ0(t − s)µ̃s ds =

∫ t

−∞
{ϕ̃1(t − s)− ϕ̃1(−s)} dWs +

∫ 0

−∞
ϕ0(−s)µ̃s ds

=
∫ t

−∞
{ϕ̃′1(t − s)− ϕ̃′1(−s)}Ws ds+

∫ 0

−∞
ϕ0(−s)µ̃s ds.

As before, the recipe (4.7) can be used to obtainµ̃, which is now an adapted Gaussian
process, vanishing at zero. Can it be used to change measure? We can use the Novikov
criterion (see, for example, Ikeda and Watanabe 1981) to guarantee that a change of measure
exists at least up to some positive timeε. This will be enough, because an arbitrage could
have been constructed by that time.

5. CONCLUSION

We have seen that fractional Brownian motion is an absurd candidate for a log-price process.
We have also seen that the arbitrage is arising because of the behavior of the kernelϕ(t) =
t H−1/2I{t>0} on small time scales. Since the fractional Brownian motion was introduced to
model perceived long-range dependence in share returns, the way around all the problems
is obvious; if we define

Xt =
∫ t

−∞
ϕ(t − s) dWs −

∫ 0

−∞
ϕ(−s) dWs,

whereϕ ∈ C2(R), ϕ(0) = 1, ϕ′(0) = 0, and limt→∞ ϕ′′(t)t5/2−H exists in(0,∞), thenX
is a Gaussian process, with the same long-range dependence as fractional Brownian motion
and yet (integrating by parts)

Xt = Wt +
∫ t

−∞
ϕ′(t − s)Ws ds−

∫ 0

−∞
ϕ′(−s)Ws ds

= Wt +
∫ t

0

(∫ s

−∞
ϕ′′(s− v)Wv dv

)
ds,

exhibiting X as a semimartingale. We could take

ϕ(t) = (ε + t2)(2H−1)/4,

for example.
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